【題目】已知在平面直角坐標系內(nèi),的三個頂點的分別為,(正方形網(wǎng)格中每個小正方形的邊長是一個單位長度).

1)在網(wǎng)格內(nèi)畫出向下平移2個單位長度得到的,點的坐標是________

2)以點為位似中心,在網(wǎng)格內(nèi)畫出,使位似,且位似比為,點的坐標是________;

3的面積是________平方單位.

【答案】1)圖見解析,;(2)圖見解析,;(310

【解析】

1)根據(jù)平移的性質(zhì)得出AB、C的對應(yīng)點A1、B1C1的位置,然后順次連接,寫出點的坐標即可;

2)根據(jù)位似圖形的性質(zhì)得出A2、C2的位置,然后順次連接,寫出點的坐標即可;

3)根據(jù)的面積=的面積+的面積計算即可.

解:(1)如圖,為所求,;

2)如圖,為所求,;

3的面積=.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】若拋物線L:y=ax2+bx+ca,b,c是常數(shù),abc≠0與直線l都經(jīng)過y軸上的一點P,且拋物線L的頂點Q在直線l上,則稱此直線l與該拋物線L具有“一帶一路”關(guān)系.此時,直線l叫做拋物線L的“帶線”,拋物線L叫做直線l的“路線”.

1若直線y=mx+1與拋物線y=x2﹣2x+n具有“一帶一路”關(guān)系,求m,n的值;

2若某“路線”L的頂點在反比例函數(shù)y=的圖象上,它的“帶線”l的解析式為y=2x﹣4,求此“路線”L的解析式;

3當常數(shù)k滿足≤k≤2時,求拋物線L:y=ax2+3k2﹣2k+1x+k的“帶線”l與x軸,y軸所圍成的三角形面積的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】現(xiàn)有五個小球,每個小球上面分別標著 123,4,5 這五個數(shù)字中的一個,這些小球除標的數(shù)字不同以外,其余的全部相同.把分別標有數(shù)字 45 的兩個小球放入不透明的口袋 A 中,把分別標有數(shù) 1、2、3 的三個小球放入不透明的口袋 B 中.現(xiàn)隨機從 A B 兩個口袋中各取出一個小球,把 A 口袋中取出的小球上標的數(shù)字記作 m,從B口袋中取出的小球上標的數(shù)字記作 n,且 mnk,則 y 關(guān)于 x 的二次函數(shù) x 軸有交點的概率是_________________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知關(guān)于x的一元二次方程 (a+2b)x2-x+(a+2b)=0有實數(shù)根.

(1)a=2,b=1,求方程的根

(2)m=a2+b2+5a,b<0,m的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知ABC中,∠C=90°,AC=BC=,將ABC繞點A順時針方向旋轉(zhuǎn)60°AB′C′的位置,連接C′B,求C′B的長度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】中,現(xiàn)有兩個動點P、Q分別從點A和點B同時出發(fā),其中點P1cm/s的速度,沿AC向終點C移動;點Q1.25cm/s的速度沿BC向終點C移動.過點PPE∥BCAD于點E,連結(jié)EQ.設(shè)動點運動時間為x秒.

1)用含x的代數(shù)式表示AEDE的長度;

2)當點QBD(不包括點B、D)上移動時,設(shè)的面積為,求與月份的函數(shù)關(guān)系式,并寫出自變量的取值范圍;

3)當為何值時,為直角三角形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小明跳起投籃,球出手時離地面m,球出手后在空中沿拋物線路徑運動,并在距出手點水平距離4m處達到最高度4m.已知籃筐中心距地面3m,與球出手時的水平距離為8m,建立如圖所示的平面直角坐標系.

(1)求此拋物線對應(yīng)的函數(shù)關(guān)系式;

(2)此次投籃,球能否直接命中籃筐中心?若能,請說明理由;若不能,在出手的角度和力度都不變的情況下,球出手時距離地面多少米可使球直接命中籃筐中心?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線經(jīng)過點

1)求此拋物線的函數(shù)解析式;

2)判斷點是否在此拋物線上;

3)求出拋物線上縱坐標為的點的坐標.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,ABAC5,BC6,點M在△ABC內(nèi),AM平分∠BAC.點E與點MAC所在直線的兩側(cè),AEABAEBC,點NAC邊上,CNAM,連接ME,BN

1)補全圖形;

2)求MEBN的值;

3)問:點M在何處時BM+BN取得最小值?確定此時點M的位置,并求此時BM+BN的最小值.

查看答案和解析>>

同步練習(xí)冊答案