【題目】反比例函數(shù)y=的圖象向右平移個單位長度得到一個新的函數(shù),當(dāng)自變量x1,2,3,4,5,…,(正整數(shù))時,新的函數(shù)值分別為y1,y2,y3,y4,y5,…,其中最小值和最大值分別為( 。

A. y1,y2 B. y43,y44 C. y44,y45 D. y2014,y2015

【答案】C

【解析】

圖象y=向右平移個單位長度得到一個新的函數(shù)y=,因為44<<45,結(jié)合圖形可知:當(dāng)x<44時,y<0,yx的增大而減小,x=44時,得到y的最小值y44,當(dāng)x>45時,y>0,yx的增大而增大,x=45時,得到y的最大值y45

解:圖象y=向右平移個單位長度得到一個新的函y=,

44<<45,

∴當(dāng)x<44時,y<0,yx的增大而減小,x=44時,得到y的最小值y44,

當(dāng)x>45時,y>0,yx的增大而增大,x=45時,得到y的最大值y45

故選:C.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在中,.

⑴已知線段AB的垂直平分線與BC邊交于點P,連結(jié)AP,求證:;

⑵以點B為圓心,線段AB的長為半徑畫弧,與BC邊交于點Q,連結(jié)AQ,若,求的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,一次函數(shù)y=kx+b分別交y軸、x軸于C、D兩點,與反比例函數(shù)y=(x>0)的圖象交于A(m,8),B(4,n)兩點.

(1)求一次函數(shù)的解析式;

(2)根據(jù)圖象直接寫出kx+b﹣<0x的取值范圍;

(3)求AOB的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】作圖題:已知MAB=60°,以AB的長為菱形ABCD的邊長,點D在AM上,

(1)作出這個菱形.(保留作圖痕跡,不寫作法,不用證明)

(2)若AB=2,則對角線AC的長為   

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】A,B兩地相距20km.甲、乙兩人都由A地去B地,甲騎自行車,平均速度為10km/h;乙乘汽車,平均速度為40km/h,且比甲晚1.5h出發(fā).設(shè)甲的騎行時間為x(h)(0≤x≤2)

(1)根據(jù)題意,填寫下表:

時間x(h)

A地的距離

0.5

1.8

_____

甲與A地的距離(km)

5

  

20

乙與A地的距離(km)

0

12

  

(2)設(shè)甲,乙兩人與A地的距離為y1(km)和y2(km),寫出y1,y2關(guān)于x的函數(shù)解析式;

(3)設(shè)甲,乙兩人之間的距離為y,當(dāng)y=12時,求x的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,在4×8的網(wǎng)格紙中,每個小正方形的邊長都為1,動點P、Q分別從點D、A同時出發(fā)向右移動,點P的運動速度為每秒1個單位,點Q的運動速度為每秒0.5個單位,當(dāng)點P運動到點C時,兩個點都停止運動,設(shè)運動時間為t(0<t<8).

(1)請在4×8的網(wǎng)格紙圖2中畫出t6秒時的線段PQ.并求其長度;

(2)當(dāng)t為多少時,△PQB是以PQ為腰的等腰三角形?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,直線過點且平行于. 如果三個頂點的坐標(biāo)分別是,,關(guān)于直線的對稱圖形是.

(1)畫出

(2)直接寫出、的坐標(biāo).

(3)求出四邊形的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某中學(xué)開展以我最愛的職業(yè)為主的調(diào)查活動,通過對學(xué)生的隨機抽樣調(diào)查得到一組數(shù)據(jù),下面兩圖是根據(jù)這組數(shù)據(jù)繪制的兩幅不完整的統(tǒng)計圖,請你根據(jù)圖中提供的信息解答下列各題:

(1)求在這次活動中,一共調(diào)查了多少名學(xué)生?

(2)在扇形統(tǒng)計圖中,求教師所在扇形的圓心角的度數(shù);

(3)補全折線統(tǒng)計圖.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,RtACB中,∠ACB=90°,ABC的角平分線AD、BE相交于點P,過PPFADBC的延長線于點F,交AC于點H,則下列結(jié)論:①∠APB=135°;BF=BA;PH=PD;④連接CP,CP平分∠ACB,其中正確的是(  )

A. ①②③ B. ①②④ C. ①③④ D. ①②③④

查看答案和解析>>

同步練習(xí)冊答案