【題目】已知拋物線y=x2﹣2x﹣3.
(1)拋物線與x的交點(diǎn)坐標(biāo)是 ,頂點(diǎn)是 .
(2)選取適當(dāng)?shù)臄?shù)據(jù)填入下表.在直角坐標(biāo)系中利用五點(diǎn)法畫出此拋物線的圖象.
X | … | … | |||||
y | … | … |
(3)結(jié)合函數(shù)圖象,回答下題:
若拋物線上兩點(diǎn)A(x1,y1),B(x2,y2)的橫坐標(biāo)滿足x1<x2<1比較y1,y2的大。 .當(dāng)y<0,自變量x的取值范圍是 .
【答案】(1)(﹣1,0),(3,0);(1,4);(2)詳見解析;(3)y1>y2,﹣1<x<3.
【解析】
(1)解方程x2﹣2x﹣3=0得拋物線與x軸的交點(diǎn)坐標(biāo),利用配方法得到y=(x﹣1)2﹣4,從而得到拋物線的頂點(diǎn)坐標(biāo);
(2)利用描點(diǎn)法畫函數(shù)圖象;
(3)利用二次函數(shù)的性質(zhì)判斷y1,y2的大小,結(jié)合函數(shù)圖象寫出函數(shù)圖象在x軸下方所對(duì)應(yīng)的自變量的范圍即可.
解:(1)當(dāng)y=0時(shí),x2﹣2x﹣3=0,解得x1=﹣1,x2=3,
∴拋物線與x軸的交點(diǎn)坐標(biāo)是(﹣1,0)(3,0);
∵y=x2﹣2x﹣3
y=x2﹣2x+1-4
y=(x﹣1)2﹣4,
∴拋物線的頂點(diǎn)坐標(biāo)為(1,﹣4);
故答案為: (﹣1,0),(3,0);(1,4);
(2)如圖,
如圖,
(3)由題意可知,拋物線對(duì)稱軸為直線x=1,開口向上
∴當(dāng)x1<x2<1時(shí),y1>y2:
當(dāng)y<0,自變量x的取值范圍是﹣1<x<3.
故答案為(﹣1,0)(3,0);(1,﹣4);y1>y2:1<x<3.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,經(jīng)過矩形的頂點(diǎn),且與,相交于點(diǎn),,,,在圓心同側(cè).已知,.
(1)的長(zhǎng)為__________.
(2)若的半徑長(zhǎng)為,則________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:甲、乙兩車分別從相距300km的A,B兩地同時(shí)出發(fā)相向而行,甲到B地后立即返回,下圖是它們離各自出發(fā)地的距離y與行駛時(shí)間x之間的函數(shù)圖象.
(1)求甲車離出發(fā)地的距離y與行駛時(shí)間x之間的函數(shù)關(guān)系式,并標(biāo)明自變量的取值范圍;
(2)若已知乙車行駛的速度是40千米/小時(shí),求出發(fā)后多長(zhǎng)時(shí)間,兩車離各自出發(fā)地的距離相等;
(3)它們?cè)谛旭傔^程中有幾次相遇.并求出每次相遇的時(shí)間.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知PA,PB分別切⊙O于點(diǎn)A、B,∠P=60°,PA=8,那么弦AB的長(zhǎng)是_____;連接OA、OB,則∠AOB=_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC為等邊三角形,點(diǎn)P是線段AC上一動(dòng)點(diǎn)(點(diǎn)P不與A,C重合),連接BP,過點(diǎn)A作直線BP的垂線段,垂足為點(diǎn)D,將線段AD繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)60°得到線段AE,連接DE,CE.
(1)求證:BD=CE;
(2)延長(zhǎng)ED交BC于點(diǎn)F,求證:F為BC的中點(diǎn);
(3)在(2)的條件下,若△ABC的邊長(zhǎng)為1,直接寫出EF的最大值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,拋物線與x軸交于A,B兩點(diǎn)(A在B的左側(cè)),與y軸交于點(diǎn)C,頂點(diǎn)為D.
(1)請(qǐng)直接寫出點(diǎn)A,C,D的坐標(biāo);
(2)如圖(1),在x軸上找一點(diǎn)E,使得△CDE的周長(zhǎng)最小,求點(diǎn)E的坐標(biāo);
(3)如圖(2),F為直線AC上的動(dòng)點(diǎn),在拋物線上是否存在點(diǎn)P,使得△AFP為等腰直角三角形?若存在,求出點(diǎn)P的坐標(biāo),若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,A為某旅游景區(qū)的最佳觀景點(diǎn),游客可從B處乘坐纜車先到達(dá)小觀景平臺(tái)DE觀景,然后再由E處繼續(xù)乘坐纜車到達(dá)A處,返程時(shí)從A處乘坐升降電梯直接到達(dá)C處,已知:AC⊥BC于C,DE∥BC,BC=110米,DE=9米,BD=60米,α=32°,β=68°,求AC的高度.(參考數(shù)據(jù):sin32°≈0.53;cos32°≈0.85;tan32°≈0.62;sin68°≈0.93;cos68°≈0.37;tan68°≈2.48)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,Rt△ABC中,∠ACB=90°,點(diǎn)D為邊AC上一點(diǎn),DE⊥AB于點(diǎn)E,點(diǎn)M為BD中點(diǎn),CM的延長(zhǎng)線交AB于點(diǎn)F.
(1)求證:CM=EM;
(2)若∠BAC=50°,求∠EMF的大;
(3)如圖2,若△DAE≌△CEM,點(diǎn)N為CM的中點(diǎn),求證:AN∥EM.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖;三個(gè)頂點(diǎn)的坐標(biāo)分別為,,
(1)請(qǐng)畫出將向左平移4個(gè)單位長(zhǎng)度后得到的圖形;
(2)請(qǐng)畫出關(guān)于點(diǎn)成中心對(duì)稱的圖形;
(3)若繞點(diǎn)旋轉(zhuǎn)可以得到,請(qǐng)直接寫出點(diǎn)的坐標(biāo);
(4)在軸上找一點(diǎn),使的值最小,請(qǐng)直接寫出點(diǎn)的坐標(biāo).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com