【題目】某校“陽光足球俱樂部”計劃購進一批甲、乙兩種型號的足球,乙型足球每個進價比甲型足球每個進價多10元,若購進甲型足球3個和乙型足球5個,共需要資金370元.
(1)求甲、乙兩種型號的足球進價各是多少元?
(2)該商店計劃購進這兩種型號的足球共50個,而可用于購買這兩種型號的足球資金不少于2250元,但又不超過2270元.該商店有幾種進貨方案?
(3)已知商店出售一個甲種足球可獲利6元,出售一個乙種足球可獲利10元,試問在(2)的條件下,商店采用哪種方案可獲利最多?
【答案】(1)每只甲型足球進價是40元,每只乙型足球進價是50元;(2) 該經銷商有3種進貨方案,見解析;(3)方案一獲利最多
【解析】
(1)設甲型足球進價是x元,乙型足球進價是y元,根據乙型足球每個進價比甲型足球每個進價多10元,若購進甲型足球3個和乙型足球5個,共需要資金370元即可列方程組求解;
(2)設購進甲型足球為a只,則購進乙型足球為(50﹣a)只,根據用于購買這兩種型號的足球的資金不少于2250元但又不超過2270元即可列不等式組求得a的范圍,然后根據a是正整數從而求得a的值;
(3)根據(2)中的方案,求得獲利,即可進行比較.
解:(1)設甲型足球進價是x元,乙型足球進價是y元得:,解得:.
每只甲型足球進價是40元,每只乙型足球進價是50元.
(2)設購進甲型足球為a只,則購進乙型足球為(50﹣a)只,
得:
解得:23≤a≤25,
因為a是正整數,所以a=23,24,25.
該經銷商有3種進貨方案:
①方案一:購進23只甲型足球,27只乙型足球;
②方案二:購進24只甲型足球,26只乙型足球;
③方案三:購進25只甲型足球,25只乙型足球.
(3)方案一商家可獲利408元;
方案二商家可獲利402元;
方案三商家可獲利400元.
∴方案一獲利最多.
科目:初中數學 來源: 題型:
【題目】根據揚州市某風景區(qū)的旅游信息,公司組織一批員工到該風景區(qū)旅游,支付給旅行社元. 公司參加這次旅游的員工有多少人?
揚州市某風景區(qū)旅游信息表
旅游人數 | 收費標準 |
不超過人 | 人均收費元 |
超過人 | 每增加人,人均收費降低元,但人均收費不低于元 |
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,AE∥BF,AC平分∠BAE,且交BF于點C,BD平分∠ABF,且交AE于點D,連接CD.
(1)求證:四邊形ABCD是菱形;
(2)若∠ADB=30°,BD=6,求AD的長.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某班參加一次智力競賽,共a、b、c三題,每題或者得滿分或者得0分,其中題a滿分20分,題b、題c滿分均為25分.競賽結果,每個學生至少答對了一題,三題全答對的有1人,答對其中兩道題的有15人,答對題a的人數與答對題b的人數之和為29,答對題a的人數與答對題c的人數之和為25,答對題b的人數與答對題c的人數之和為20,在這個班的平均成績是__分.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在矩形ABCD中,E為AB邊上一點,EC平分∠DEB,F為CE的中點,連接AF,BF,過點E作EH∥BC分別交AF,CD于G,H兩點.
(1)求證:DE=DC;
(2)求證:AF⊥BF;
(3)當AFGF=28時,請直接寫出CE的長.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在平面直角坐標系中,長方形OABC的頂點A、C分別在x軸、y軸的正半軸上,點B的坐標為(8,4),將該長方形沿OB翻折,點A的對應點為點D,OD與BC交于點E.
(1)求點E的坐標;
(2)點M是OB上任意一點,點N是OA上任意一點,是否存在點M、N,使得AM+MN最小?若存在,求出其最小值,若不存在,請說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在平面直角坐標系中,拋物線y= x2﹣ x﹣ 與x軸交于A、B兩點(點A在點B的左側),與y軸交于點C,對稱軸與x軸交于點D,點E(4,n)在拋物線上.
(1)求直線AE的解析式;
(2)點P為直線CE下方拋物線上的一點,連接PC,PE.當△PCE的面積最大時,連接CD,CB,點K是線段CB的中點,點M是CP上的一點,點N是CD上的一點,求KM+MN+NK的最小值;
(3)點G是線段CE的中點,將拋物線y= x2﹣ x﹣ 沿x軸正方向平移得到新拋物線y′,y′經過點D,y′的頂點為點F.在新拋物線y′的對稱軸上,是否存在一點Q,使得△FGQ為等腰三角形?若存在,直接寫出點Q的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在菱形ABCD中,AB=2,∠DAB=60°,點E是AD邊的中點,點M是AB邊上一動點(不與點A重合),延長ME交射線CD于點N,連接MD,AN.
(1)求證:四邊形AMDN是平行四邊形;
(2)填空:①當AM的值為 時,四邊形AMDN是矩形;②當AM的值為 時,四邊形AMDN是菱形。
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com