【題目】如圖,以G(0,1)為圓心,半徑為2的圓與x軸交于A、B兩點,與y軸交于C,D兩點,點E⊙O上一動點,CF⊥AEF,則弦AB的長度為________;點E在運動過程中,線段FG的長度的最小值為________

【答案】2 ﹣1

【解析】

連接AC,AG,由OG垂直于AB,利用垂徑定理得到OAB的中點,由G的坐標確定出OG的長,在直角三角形AOG中,由AGOG的長,利用勾股定理求出AO的長,進而確定出AB的長,由CG+GO求出OC的長,在直角三角形AOC中,利用勾股定理求出AC的長,由CF垂直于AE,得到三角形ACF始終為直角三角形,點F的運動軌跡為以AC為直徑的半徑,當(dāng)點三點在同一條直線上時,線段FG的長度有最小值,根據(jù)求解即可.

連接AC,AG,

GOAB,

OAB的中點,

G(0,1),即OG=1,

∴在RtAOG,根據(jù)勾股定理得:

CO=CG+GO=2+1=3,

∴在RtAOC,根據(jù)勾股定理得:

CFAE,

∴△ACF始終是直角三角形,點F的運動軌跡為以AC為直徑的半圓,

AC的中點為

當(dāng)點三點在同一條直線上時,線段FG的長度有最小值,

故答案為:(1). 2 (2). ﹣1

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知∠BDA=CDA,則不一定能使ABD≌△ACD的條件是( 。

A. BD=DC B. AB=AC C. B=C D. BAD=CAD

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,ABAC.點DE分別在AB,AC邊上,點FAC邊的延長線上,且BDCECF

1)連接DE,判斷DEBC的位置關(guān)系,為什么?

2)連接DFBC于點G.判斷DGGF的數(shù)量關(guān)系,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】直線與兩坐標軸交于、兩點,以為斜邊在第二象限內(nèi)作等腰,的圖象過點,則________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知ABCBC邊上的垂直平分線DEBAC得平分線交于點EEFABAB的延長線于點F,EGAC交于點G

求證:(1BF=CG;(2AF=AB+AC).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下面是小明同學(xué)設(shè)計的已知底邊及底邊上的中線作等腰三角形的尺規(guī)作圖過程.

已知:如圖 1,線段 a 和線段 b

求作:△ABC,使得 AB = AC,BC = a,BC 邊上的中線為 b

作法:如圖 ,

作射線 BM,并在射線 BM 上截取 BC = a

作線段 BC 的垂直平分線 PQ,PQ BC D;

D 為圓心,b 為半徑作弧,交 PQ A;

連接 AB AC

則△ABC 為所求作的圖形.

根據(jù)上述作圖過程,回答問題:

1用直尺和圓規(guī),補全圖 2 中的圖形;

2)完成下面的證明:

證明:由作圖可知 BC = a,AD = b

PQ 為線段 BC 的垂直平分線,點 A PQ 上,

AB = AC )(填依據(jù)).

線段 BC 的垂直平分線 PQ BC D,

BD=CD.( )(填依據(jù)).

AD BC 邊上的中線,且 AD = b

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點P,MN分別在等邊△ABC的各邊上,且MPAB于點P,MNBC于點M,PNAC于點N

1)求證:△PMN是等邊三角形;

2)若AB18cm,求CM的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在矩形中,,分別是線段,上的點,連接,使四邊形為正方形,若點上的動點,連接,將矩形沿折疊使得點落在正方形的對角線所在的直線上,對應(yīng)點為,則線段的長為________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】八(1)班為了配合學(xué)校體育文化月活動的開展,同學(xué)們從捐助的班費中拿出一部分錢來購買羽毛球拍和跳繩。已知購買一副羽毛球拍比購買一根跳繩多20元。若用200元購買羽毛球拍和用80元購買跳繩,則購買羽毛球拍的副數(shù)是購買跳繩根數(shù)的一半。

1)求購買一副羽毛球拍、一根跳繩各需多少元?

2)雙11期間,商店老板給予優(yōu)惠,購買一副羽毛球拍贈送一根跳繩,如果八(1)班需要的跳繩根數(shù)比羽毛球拍的副數(shù)的倍還多,且該班購買羽毛球拍和跳繩的總費用不超過元,那么八(1)班最多可購買多少副羽毛球拍?

查看答案和解析>>

同步練習(xí)冊答案