【題目】已知二次函數(shù)y=ax2+bx+c的圖象如圖,其對(duì)稱軸x=﹣1,給出下列結(jié)果: ①b2>4ac;②abc>0;③2a+b=0;④a+b+c>0;⑤a﹣b+c<0,
則正確的結(jié)論是(

A.①②③④
B.②④⑤
C.②③④
D.①④⑤

【答案】D
【解析】解:∵拋物線與x軸有兩個(gè)交點(diǎn),∴△=b2﹣4ac>0,即b2>4ac,故①正確; ∵拋物線對(duì)稱軸為x=﹣ <0,與y軸交于負(fù)半軸,∴ab>0,c<0,abc<0,故②錯(cuò)誤;
∵拋物線對(duì)稱軸為x=﹣ =﹣1,∴2a﹣b=0,故③錯(cuò)誤;
∵當(dāng)x=1時(shí),y>0,即a+b+c>0,故④正確;
∵當(dāng)x=﹣1時(shí),y<0,即a﹣b+c<0,故⑤正確;
正確的是①④⑤.
故選D.
【考點(diǎn)精析】利用二次函數(shù)圖象以及系數(shù)a、b、c的關(guān)系對(duì)題目進(jìn)行判斷即可得到答案,需要熟知二次函數(shù)y=ax2+bx+c中,a、b、c的含義:a表示開口方向:a>0時(shí),拋物線開口向上; a<0時(shí),拋物線開口向下b與對(duì)稱軸有關(guān):對(duì)稱軸為x=-b/2a;c表示拋物線與y軸的交點(diǎn)坐標(biāo):(0,c).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,這是一個(gè)供滑板愛好者使用的U型池,該U型池可以看成是一個(gè)長(zhǎng)方體去掉一個(gè)“半圓柱”,中間可供滑行部分的截面是半徑為4 m的半圓,其邊緣ABCD=20 m,點(diǎn)ECD上,CE=2 m.一滑板愛好者從A點(diǎn)滑到E點(diǎn),則他滑行的最短路程約為____________(邊緣部分的厚度忽略不計(jì),結(jié)果保留整數(shù).提示:482≈222).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,C為線段AE上一動(dòng)點(diǎn)(不與點(diǎn)A,E重合),在AE同側(cè)分別作等邊△ABC和等邊△CDE,ADBE交于點(diǎn)O,ADBC交于點(diǎn)P,BECD交于點(diǎn)Q,連接PQ.以下五個(gè)結(jié)論:

①AD=BE②PQ∥AE;③AP=BQ;④DE=DP; ⑤∠AOB=60°

其中正確的結(jié)論的個(gè)數(shù)是( )

A. 2個(gè) B. 3個(gè) C. 4個(gè) D. 5個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】先閱讀,后解答:

像上述解題過(guò)程中,相乘,積不含有二次根式,我們可將這兩個(gè)式子稱為互為有理化因式,上述解題過(guò)程也稱為分母有理化,

(1)的有理化因式是________;的有理化因式是________.

(2)將下列式子進(jìn)行分母有理化:①________;②________.

(3)計(jì)算

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在Rt△ABC中,∠B=90°,點(diǎn)O在邊AB上,以點(diǎn)O為圓心,OA為半徑的圓經(jīng)過(guò)點(diǎn)C,過(guò)點(diǎn)C作直線MN,使∠BCM=2∠A.
(1)判斷直線MN與⊙O的位置關(guān)系,并說(shuō)明理由;
(2)若OA=4,∠BCM=60°,求圖中陰影部分的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列命題中真命題的個(gè)數(shù)( 。

(1)已知直角三角形面積為4,兩直角邊的比為1:2,則它的斜邊為5;

(2)直角三角形的最大邊長(zhǎng)為26,最短邊長(zhǎng)為10,則另一邊長(zhǎng)為24;

(3)在直角三角形中,兩條直角邊長(zhǎng)為n2﹣12n,則斜邊長(zhǎng)為n2+1;

(4)等腰三角形面積為12,底邊上的底為4,則腰長(zhǎng)為5.

A. 1個(gè) B. 2個(gè) C. 3個(gè) D. 4個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,若拋物線L1的頂點(diǎn)A在拋物線L2上,拋物線L2的頂點(diǎn)B也在拋物線L1上(點(diǎn)A與點(diǎn)B不重合),我們定義:這樣的兩條拋物L(fēng)1 , L2互為“友好”拋物線,可見一條拋物線的“友好”拋物線可以有多條.

(1)如圖2,已知拋物線L3:y=2x2﹣8x+4與y軸交于點(diǎn)C,試求出點(diǎn)C關(guān)于該拋物線對(duì)稱軸對(duì)稱的點(diǎn)D的坐標(biāo);
(2)請(qǐng)求出以點(diǎn)D為頂點(diǎn)的L3的友好拋物線L4的解析式,并指出L3與L4中y同時(shí)隨x增大而增大的自變量的取值范圍;
(3)若拋物y=a1 (x﹣m)2+n的任意一條友好拋物線的解析式為y=a2 (x﹣h)2+k,請(qǐng)寫出a1與a2的關(guān)系式,并說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在正方形ABCD中,點(diǎn)E,F(xiàn)分別在邊BC,CD上,且BE=CF.連接AE,BF,AEBF交于點(diǎn)G.下列結(jié)論錯(cuò)誤的是( 。

A. AE=BF B. ∠DAE=∠BFC

C. ∠AEB+∠BFC=90° D. AE⊥BF

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,矩形OCDE的三個(gè)頂點(diǎn)分別是C(3,0),D(3,4),E(0,4).點(diǎn)A在DE上,以A為頂點(diǎn)的拋物線過(guò)點(diǎn)C,且對(duì)稱軸x=1交x軸于點(diǎn)B.連接EC,AC.點(diǎn)P,Q為動(dòng)點(diǎn),設(shè)運(yùn)動(dòng)時(shí)間為t秒.
(1)填空:點(diǎn)A坐標(biāo)為;拋物線的解析式為
(2)在圖①中,若點(diǎn)P在線段OC上從點(diǎn)O向點(diǎn)C以1個(gè)單位/秒的速度運(yùn)動(dòng),同時(shí),點(diǎn)Q在線段CE上從點(diǎn)C向點(diǎn)E以2個(gè)單位/秒的速度運(yùn)動(dòng),當(dāng)一個(gè)點(diǎn)到達(dá)終點(diǎn)時(shí),另一個(gè)點(diǎn)隨之停止運(yùn)動(dòng).當(dāng)t為何值時(shí),△PCQ為直角三角形?

(3)在圖②中,若點(diǎn)P在對(duì)稱軸上從點(diǎn)A開始向點(diǎn)B以1個(gè)單位/秒的速度運(yùn)動(dòng),過(guò)點(diǎn)P做PF⊥AB,交AC于點(diǎn)F,過(guò)點(diǎn)F作FG⊥AD于點(diǎn)G,交拋物線于點(diǎn)Q,連接AQ,CQ.當(dāng)t為何值時(shí),△ACQ的面積最大?最大值是多少?

查看答案和解析>>

同步練習(xí)冊(cè)答案