【題目】如圖:在數(shù)軸上A點表示數(shù)a,B點示數(shù)b,C點表示數(shù)c,b是最小的正整數(shù),且a、c滿足|a+2|+(c-7)2=0.

(1)a=______,b=______,c=______;

(2)若將數(shù)軸折疊,使得A點與C點重合,則點B與數(shù)______表示的點重合;

(3)A、B、C開始在數(shù)軸上運動,若點A以每秒1個單位長度的速度向左運動,同時,點B和點C分別以每秒2個單位長度和4個單位長度的速度向右運動,假設(shè)t秒鐘過后,若點A與點B之間的距離表示為AB,點A與點C之間的距離表示為AC,點B與點C之間的距離表示為BC.則AB=______,AC=______,BC=______.(用含t的代數(shù)式表示).

(4)直接寫出點BAC中點時的t的值.

【答案】(1)-2;1;7;(2)4;(3)3+3t;9+5t;6+2t;(4)3.

【解析】

(1)利用|a+2|+(c﹣7)2=0,a+2=0,c﹣7=0,解得a,c的值b是最小的正整數(shù),可得b=1;

(2)先求出對稱點,即可得出結(jié)果;

(3)分別寫出點AB、C表示的數(shù)為,用含t的代數(shù)式表示出AB、AC、BC即可;

(4)BAC中點,得到AB=BC,列方程,求解即可

1)∵|a+2|+(c﹣7)2=0,∴a+2=0,c﹣7=0,解得a=﹣2,c=7.

b是最小的正整數(shù),∴b=1.

故答案為:﹣2,1,7.

(2)(7+2)÷2=4.5,對稱點為7﹣4.5=2.5,2.5+(2.5﹣1)=4.

故答案為:4.

(3)A表示的數(shù)為:-2-tB表示的數(shù)為:1+2t,C表示的數(shù)為:7+4t,ABt+2t+3=3t+3,ACt+4t+9=5t+9,BC=2t+6.

故答案為:3t+3,5t+9,2t+6.

(4)∵BAC中點,∴AB=BC,∴3t+3=2t+6,解得:t=3

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知點A(2,3)和點B(0,2),點A在反比例函數(shù)y= 的圖象上.作射線AB,再將射線AB繞點A按逆時針方向旋轉(zhuǎn)45°,交反比例函數(shù)圖象于點C,則點C的坐標(biāo)為.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知直線x軸交于點A,與y軸交于點B,現(xiàn)將沿直線AB翻折得到,以點A、B、C為頂點作平行四邊形,第四個頂點D的坐標(biāo)是______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,有一個只允許單向通過的窄道口,通常情況下,每分鐘可以通過9人.一天王老師到達(dá)道口時,發(fā)現(xiàn)由于擁擠,每分鐘只能有3人通過道口,此時,自己前面還有36人等待通過(假定先到達(dá)的先過,王老師過道口的時間忽略不計),通過道口后,還需7分鐘到達(dá)學(xué)校.

1)此時,若繞道而行,要15分鐘才能到達(dá)學(xué)校,從節(jié)省時間考慮,王老師應(yīng)選擇繞道去學(xué)校,還是選擇通過擁擠的道口去學(xué)校?

2)若在王老師等人的維持下,幾分鐘后秩序恢復(fù)正常(維持秩序期間,每分鐘仍有3人通過道口),結(jié)果王老師比在擁擠的情況下提前6分鐘通過道口,問維持秩序的時間是多長?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校開展了“互助、平等、感恩、和諧、進(jìn)取”主題班會活動,活動后,就活動的5個主題進(jìn)行了抽樣調(diào)查(每位同學(xué)只選最關(guān)注的一個),根據(jù)調(diào)查結(jié)果繪制了兩幅不完整的統(tǒng)計圖.根據(jù)圖中提供的信息,解答下列問題:
(1)這次調(diào)查的學(xué)生共有多少名?
(2)請將條形統(tǒng)計圖補(bǔ)充完整,并在扇形統(tǒng)計圖中計算出“進(jìn)取”所對應(yīng)的圓心角的度數(shù).
(3)如果要在這5個主題中任選兩個進(jìn)行調(diào)查,根據(jù)(2)中調(diào)查結(jié)果,用樹狀圖或列表法,求恰好選到學(xué)生關(guān)注最多的兩個主題的概率(將互助、平等、感恩、和諧、進(jìn)取依次記為A、B、C、D、E).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點C在以AB為直徑的⊙O上,AD與過點C的切線垂直,垂足為點D,AD交⊙O于點E.
(1)求證:AC平分∠DAB;
(2)連接CE,若CE=6,AC=8,求AE的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,菱形ABCD中,AB=4,∠B=60°,AE⊥BC,AF⊥CD,垂足分別為E,F(xiàn),連接EF,則△AEF的面積是(
A.4
B.3
C.2
D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平行四邊ABCD中,E、F分別是AB、DC上的點,且AE=CF,

(1)求證:ADE≌△CBF;

(2) 當(dāng)∠DEB=90°時,試說明四邊形DEBF為矩形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,把Rt△ACO以O(shè)點為中心,逆時針旋轉(zhuǎn)90°,得Rt△BDO,點B坐標(biāo)為(0,﹣3),點C坐標(biāo)為(0, ),拋物線y=﹣ x2+bx+c經(jīng)過點A和點C.

(1)求b,c的值;
(2)在x軸以上的拋物線對稱軸上是否存在點Q,使得△ACQ為等腰三角形?若存在,直接寫出點Q的坐標(biāo);若不存在,請說明理由
(3)點P從點O出發(fā)沿x軸向負(fù)半軸運動,每秒1個單位,過點P作y軸的平行線交拋物線于點M,當(dāng)t為幾秒時,以M、P、O、C為頂點得四邊形是平行四邊形?

查看答案和解析>>

同步練習(xí)冊答案