已知⊙O的圓心在坐標(biāo)原點(diǎn),半徑為3,又圓心坐標(biāo)為,半徑為1,則⊙O與的位置關(guān)系是

[  ]

A.外切
B.內(nèi)切
C.相交
D.相離
答案:B
解析:

設(shè)⊙O半徑為R,半徑為r,則Rr=31=2,∴故兩圓內(nèi)切.


練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知⊙O的圓心在坐標(biāo)原點(diǎn),半徑為2,過圓上一點(diǎn)T(
2
,
2
)的切線交x軸于A點(diǎn),交y軸于B點(diǎn).
(1)求OA、OB的長;
(2)在切線AB上取一點(diǎn)C,以C為圓心,半徑為r的⊙C與⊙O外切于P點(diǎn),兩圓的內(nèi)公切線PM交OT的延長線于M,過M點(diǎn)作⊙C的切線MN,切點(diǎn)為N.求證:MN=TC且MN∥TC;
(3)若(2)中的⊙C的圓心在AB上移動且始終與⊙O外切(即r在變化),N點(diǎn)坐標(biāo)精英家教網(wǎng)為(x,y),問N點(diǎn)的坐標(biāo)x,y能否寫成與r無關(guān)的關(guān)系式?若能,請寫出關(guān)系式;若不能,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知⊙O的圓心在坐標(biāo)原點(diǎn),半徑為5,點(diǎn)P的坐標(biāo)為(-2,-4),則點(diǎn)P與⊙O的位置關(guān)系是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

如圖,已知⊙O的圓心在坐標(biāo)原點(diǎn),半徑為2,過圓上一點(diǎn)T(數(shù)學(xué)公式,數(shù)學(xué)公式)的切線交x軸于A點(diǎn),交y軸于B點(diǎn).
(1)求OA、OB的長;
(2)在切線AB上取一點(diǎn)C,以C為圓心,半徑為r的⊙C與⊙O外切于P點(diǎn),兩圓的內(nèi)公切線PM交OT的延長線于M,過M點(diǎn)作⊙C的切線MN,切點(diǎn)為N.求證:MN=TC且MN∥TC;
(3)若(2)中的⊙C的圓心在AB上移動且始終與⊙O外切(即r在變化),N點(diǎn)坐標(biāo)為(x,y),問N點(diǎn)的坐標(biāo)x,y能否寫成與r無關(guān)的關(guān)系式?若能,請寫出關(guān)系式;若不能,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2002年全國中考數(shù)學(xué)試題匯編《三角形》(09)(解析版) 題型:解答題

(2002•黃石)如圖,已知⊙O的圓心在坐標(biāo)原點(diǎn),半徑為2,過圓上一點(diǎn)T()的切線交x軸于A點(diǎn),交y軸于B點(diǎn).
(1)求OA、OB的長;
(2)在切線AB上取一點(diǎn)C,以C為圓心,半徑為r的⊙C與⊙O外切于P點(diǎn),兩圓的內(nèi)公切線PM交OT的延長線于M,過M點(diǎn)作⊙C的切線MN,切點(diǎn)為N.求證:MN=TC且MN∥TC;
(3)若(2)中的⊙C的圓心在AB上移動且始終與⊙O外切(即r在變化),N點(diǎn)坐標(biāo)為(x,y),問N點(diǎn)的坐標(biāo)x,y能否寫成與r無關(guān)的關(guān)系式?若能,請寫出關(guān)系式;若不能,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2002年湖北省黃石市中考數(shù)學(xué)試卷(解析版) 題型:解答題

(2002•黃石)如圖,已知⊙O的圓心在坐標(biāo)原點(diǎn),半徑為2,過圓上一點(diǎn)T(,)的切線交x軸于A點(diǎn),交y軸于B點(diǎn).
(1)求OA、OB的長;
(2)在切線AB上取一點(diǎn)C,以C為圓心,半徑為r的⊙C與⊙O外切于P點(diǎn),兩圓的內(nèi)公切線PM交OT的延長線于M,過M點(diǎn)作⊙C的切線MN,切點(diǎn)為N.求證:MN=TC且MN∥TC;
(3)若(2)中的⊙C的圓心在AB上移動且始終與⊙O外切(即r在變化),N點(diǎn)坐標(biāo)為(x,y),問N點(diǎn)的坐標(biāo)x,y能否寫成與r無關(guān)的關(guān)系式?若能,請寫出關(guān)系式;若不能,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案