(2006•汾陽市)某品牌電飯鍋成本價為70元,銷售商對其銷量與定價的關(guān)系進(jìn)行了調(diào)查,結(jié)果如下:
定價(元)100110120130140150
銷量(個)801001101008060
為獲得最大利潤,銷售商應(yīng)將該品牌電飯鍋定價為    元.
【答案】分析:根據(jù)題中信息,進(jìn)行計算比對即可得出結(jié)論.
解答:解:設(shè)定價為x元時,利潤為y
當(dāng)x=100時,y=(100-70)×80=2400.
同理可求得:
x=110,120,130,140,150時,y=4000,5500,6000,5600,4800
比較可知當(dāng)x=130元時利潤最大.
點(diǎn)評:本題考查的是二次函數(shù)的實(shí)際應(yīng)用,難度一般.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:2006年全國中考數(shù)學(xué)試題匯編《二次函數(shù)》(08)(解析版) 題型:解答題

(2006•汾陽市)如圖,已知拋物線C1與坐標(biāo)軸的交點(diǎn)依次是A(-4,0),B(-2,0),E(0,8).
(1)求拋物線C1關(guān)于原點(diǎn)對稱的拋物線C2的解析式;
(2)設(shè)拋物線C1的頂點(diǎn)為M,拋物線C2與x軸分別交于C,D兩點(diǎn)(點(diǎn)C在點(diǎn)D的左側(cè)),頂點(diǎn)為N,四邊形MDNA的面積為S.若點(diǎn)A,點(diǎn)D同時以每秒1個單位的速度沿水平方向分別向右、向左運(yùn)動;與此同時,點(diǎn)M,點(diǎn)N同時以每秒2個單位的速度沿堅直方向分別向下、向上運(yùn)動,直到點(diǎn)A與點(diǎn)D重合為止.求出四邊形MDNA的面積S與運(yùn)動時間t之間的關(guān)系式,并寫出自變量t的取值范圍;
(3)當(dāng)t為何值時,四邊形MDNA的面積S有最大值,并求出此最大值;
(4)在運(yùn)動過程中,四邊形MDNA能否形成矩形?若能,求出此時t的值;若不能,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2006年山西省中考數(shù)學(xué)試卷(課標(biāo)卷)(解析版) 題型:解答題

(2006•汾陽市)如圖,已知拋物線C1與坐標(biāo)軸的交點(diǎn)依次是A(-4,0),B(-2,0),E(0,8).
(1)求拋物線C1關(guān)于原點(diǎn)對稱的拋物線C2的解析式;
(2)設(shè)拋物線C1的頂點(diǎn)為M,拋物線C2與x軸分別交于C,D兩點(diǎn)(點(diǎn)C在點(diǎn)D的左側(cè)),頂點(diǎn)為N,四邊形MDNA的面積為S.若點(diǎn)A,點(diǎn)D同時以每秒1個單位的速度沿水平方向分別向右、向左運(yùn)動;與此同時,點(diǎn)M,點(diǎn)N同時以每秒2個單位的速度沿堅直方向分別向下、向上運(yùn)動,直到點(diǎn)A與點(diǎn)D重合為止.求出四邊形MDNA的面積S與運(yùn)動時間t之間的關(guān)系式,并寫出自變量t的取值范圍;
(3)當(dāng)t為何值時,四邊形MDNA的面積S有最大值,并求出此最大值;
(4)在運(yùn)動過程中,四邊形MDNA能否形成矩形?若能,求出此時t的值;若不能,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2006年山西省呂梁中考數(shù)學(xué)試卷(課標(biāo)卷)(解析版) 題型:解答題

(2006•汾陽市)如圖,已知拋物線C1與坐標(biāo)軸的交點(diǎn)依次是A(-4,0),B(-2,0),E(0,8).
(1)求拋物線C1關(guān)于原點(diǎn)對稱的拋物線C2的解析式;
(2)設(shè)拋物線C1的頂點(diǎn)為M,拋物線C2與x軸分別交于C,D兩點(diǎn)(點(diǎn)C在點(diǎn)D的左側(cè)),頂點(diǎn)為N,四邊形MDNA的面積為S.若點(diǎn)A,點(diǎn)D同時以每秒1個單位的速度沿水平方向分別向右、向左運(yùn)動;與此同時,點(diǎn)M,點(diǎn)N同時以每秒2個單位的速度沿堅直方向分別向下、向上運(yùn)動,直到點(diǎn)A與點(diǎn)D重合為止.求出四邊形MDNA的面積S與運(yùn)動時間t之間的關(guān)系式,并寫出自變量t的取值范圍;
(3)當(dāng)t為何值時,四邊形MDNA的面積S有最大值,并求出此最大值;
(4)在運(yùn)動過程中,四邊形MDNA能否形成矩形?若能,求出此時t的值;若不能,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2006年全國中考數(shù)學(xué)試題匯編《二次函數(shù)》(04)(解析版) 題型:填空題

(2006•汾陽市)甲、乙兩人進(jìn)行羽毛球比賽,甲發(fā)出一顆十分關(guān)鍵的球,出手點(diǎn)為P,羽毛球飛行的水平距離s(米)與其距地面高度h(米)之間的關(guān)系式為h=-s2+s+.如圖,已知球網(wǎng)AB距原點(diǎn)5米,乙(用線段CD表示)扣球的最大高度為米,設(shè)乙的起跳點(diǎn)C的橫坐標(biāo)為m,若乙原地起跳,因球的高度高于乙扣球的最大高度而導(dǎo)致接球失敗,則m的取值范圍是   

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2006年全國中考數(shù)學(xué)試題匯編《函數(shù)基礎(chǔ)知識》(02)(解析版) 題型:選擇題

(2006•汾陽市)如圖,是某函數(shù)的圖象,則下列結(jié)論中正確的是( )

A.當(dāng)y=1時,x的取值是
B.當(dāng)y=-3時,x的近似值是0,2
C.當(dāng)時,函數(shù)值y最大
D.當(dāng)x>-3時,y隨x的增大而增大

查看答案和解析>>

同步練習(xí)冊答案