【題目】已知一次函數(shù)y=2m-3x+m+1經(jīng)過點A14

1)求m的值;

2)畫出此一次函數(shù)的圖象;

3)若一次函數(shù)交y軸于點B,求△OAB的面積.

【答案】1m=2;(2)見解析;(3

【解析】

1)把點A14)代入一次函數(shù)y=2m-3x+m+1即可求出m的值;

2)已知點A1,4),再令x=0,y=3,根據(jù)兩點確定一條直線,畫出函數(shù)圖象即可;

3)過點AACy軸于點C,求得AC=1y=x+3y軸交于點B0,3),求得OB=3,根據(jù)△OAB的面積即可求得;

解:

1)∵一次函數(shù)y=2m-3x+m+1經(jīng)過點A14),

4=2m3+m+1,

解得:m=2

∴一次函數(shù)的解析式為:y=x+3;

2)如圖:

3)如圖:過點AACy軸于點C,

AC=1,

y=x+3y軸的交點為:令x=0,求得y=3,

y=x+3y軸的交點交于點B03),

OB=3,

∴△OAB的面積;

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖是位于陜西省西安市薦福寺內(nèi)的小雁塔,是中國早期方形密檐式磚塔的典型作品,并作為絲綢之路的一處重要遺址點,被列入《世界遺產(chǎn)名錄》.小銘、小希等幾位同學(xué)想利用一些測量工具和所學(xué)的幾何知識測量小雁塔的高度,由于觀測點與小雁塔底部間的距離不易測量,因此經(jīng)過研究需要進(jìn)行兩次測量,于是在陽光下,他們首先利用影長進(jìn)行測量,方法如下:小銘在小雁塔的影子頂端D處豎直立一根木棒CD,并測得此時木棒的影長DE=2.4米;然后,小希在BD的延長線上找出一點F,使得A、C、F三點在同一直線上,并測得DF=2.5米.已知圖中所有點均在同一平面內(nèi),木棒高CD=1.72米,ABBF,CDBF,試根據(jù)以上測量數(shù)據(jù),求小雁塔的高度AB.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知,AB、AC是圓O的兩條弦,AB=AC,過圓心O作OHAC于點H.

(1)如圖1,求證:B=C;

(2)如圖2,當(dāng)H、O、B三點在一條直線上時,求BAC的度數(shù);

(3)如圖3,在(2)的條件下,點E為劣弧BC上一點,CE=6,CH=7,連接BC、OE交于點D,求BE的長和的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】高科技發(fā)展公司投資500萬元,成功研制出一種市場需求量較大的高科技替代產(chǎn)品,并投入資金1500萬元作為固定投資,已知生產(chǎn)每件產(chǎn)品的成本是40元.在銷售過程中發(fā)現(xiàn):當(dāng)銷售單價定為100元時,年銷售量為20萬件;銷售單價每增加10元,年銷售量將減少1萬件,設(shè)銷售單價為x(元),年銷售量為y(萬件),年獲利(年獲利=年銷售額一生產(chǎn)成本投資)為z(萬元).

(1)試寫出y與x之間的函數(shù)關(guān)系式(不寫x的取值范圍);

(2)試寫出z與x之間的函數(shù)關(guān)系式(不寫x的取值范圍);

3)公司計劃,在第一年按年獲利最大確定銷售單價進(jìn)行銷售;到第二年年底獲利不低于1130萬元,請借助函數(shù)的大致圖象說明:第二年的銷售單價x(元)應(yīng)確定在什么范圍內(nèi)?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某學(xué)校組織團(tuán)員舉行申奧成功宣傳活動,從學(xué)校騎車出發(fā),先上坡到達(dá)A地后,宣傳8分鐘;然后下坡到B地宣傳8分鐘返回,行程情況如圖.若返回時,上、下坡速度仍保持不變,在A地仍要宣傳8分鐘,那么他們從B地返回學(xué)校用的時間是(

A. 45.2分鐘 B. 48分鐘 C. 46分鐘 D. 33分鐘

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】RtABC中,∠C=90°,AC=6BC=8,DAB的中點,E、F分別是AC、BC上兩點,且EDFD

1)如圖1,若EAC中點,則BF=______,EF=______AE2+BF2______EF2(填“>,<=”);

2)如圖2,若點EAC邊上任意一點,AE2+BF2_____EF2(填“>,<=”),請說明理由;

3)若點ECA延長上,(2)中三條線段之間的關(guān)系是否成立?請畫圖說明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,在正方形ABCD和正方形BEFG中,點A,B,E在同一條直線上,連接DF,且P是線段DF的中點,連接PG,PC.

(1)如圖1中,PGPC的位置關(guān)系是   ,數(shù)量關(guān)系是   

(2)如圖2將條件正方形ABCD和正方形BEFG”改為矩形ABCD和矩形BEFG”其它條件不變,求證:PG=PC;

(3)如圖3,若將條件正方形ABCD和正方形BEFG”改為菱形ABCD和菱形BEFG”,點A,B,E在同一條直線上,連接DF,P是線段DF的中點,連接PG、PC,且∠ABC=∠BEF=60°,求的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,在平面直角坐標(biāo)系中,一次函數(shù)y=﹣2x+8的圖象與x軸,y軸分別交于點A,點C,過點AABx軸,垂足為點A,過點CCBy軸,垂足為點C,兩條垂線相交于點B.

(1)線段AB,BC,AC的長分別為AB=   ,BC=   ,AC=   ;

(2)折疊圖1中的ABC,使點A與點C重合,再將折疊后的圖形展開,折痕DEAB于點D,交AC于點E,連接CD,如圖2.

請從下列A、B兩題中任選一題作答,我選擇   題.

A:①求線段AD的長;

②在y軸上,是否存在點P,使得APD為等腰三角形?若存在,請直接寫出符合條件的所有點P的坐標(biāo);若不存在,請說明理由.

B:①求線段DE的長;

②在坐標(biāo)平面內(nèi),是否存在點P(除點B外),使得以點A,P,C為頂點的三角形與ABC全等?若存在,請直接寫出所有符合條件的點P的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,A(a,0),B(0,b),且a、b滿足(a﹣2)2+=0.

(1)求直線AB的解析式;

(2)若點M為直線y=mx上一點,且ABM是等腰直角三角形,求m值;

(3)過A點的直線y=kx﹣2k交y軸于負(fù)半軸于P,N點的橫坐標(biāo)為﹣1,過N點的直線y=x﹣交AP于點M,試證明的值為定值.

查看答案和解析>>

同步練習(xí)冊答案