情境一

我們知道:頂點(diǎn)在圓上,并且兩邊都和圓相交的角叫做圓周角.我們還知道:①圓心角的度數(shù)等于與它所對(duì)的弧的度數(shù),②同弧所對(duì)的圓周角相等,都等于該弧所對(duì)的圓心角的一半.由此,小明得到一個(gè)正確的結(jié)論:圓周角的度數(shù)等于它所對(duì)的弧的度數(shù)的一半.如圖1,∠LMN

問(wèn)題1  填空:如圖1,如果的度數(shù)是80,那么∠LMN的度數(shù)是______

1

情境二

小明把頂點(diǎn)在圓外,并且兩邊都和圓相交的角叫圓外角,并繼續(xù)探索.

如圖2,∵∠PTQ是△OPT的一個(gè)外角,

∴∠PTQ=∠O+∠P

∴∠O=∠PTQ -∠P

∵圓周角的度數(shù)等于它所對(duì)的弧的度數(shù)的一半(已在情境一中

證明),

∴∠PTQ,∠P

∴∠O=∠PTQ -∠P(). 

經(jīng)歷了上述探索、證明過(guò)程,小明發(fā)現(xiàn)了“圓外角的度數(shù)等于它所夾的較大弧的度數(shù)減去較小弧的度數(shù)所得差的一半”這個(gè)正確結(jié)論.

問(wèn)題2  填空:如圖2,如果=80°,=20°,那么∠O______°.

問(wèn)題3  類(lèi)比情境二的內(nèi)容,請(qǐng)你就角的頂點(diǎn)在圓內(nèi)的情況進(jìn)行探索.寫(xiě)出你的發(fā)現(xiàn),并證明你的結(jié)論.

問(wèn)題1  40.………………2分

問(wèn)題2  30.………………4分

問(wèn)題3  頂點(diǎn)在圓內(nèi)的角叫圓內(nèi)角.(圓內(nèi)角的名稱(chēng)可以用其他名稱(chēng)替代)………………5分

圓內(nèi)角的度數(shù)等于它和它的對(duì)頂角所對(duì)兩弧的度數(shù)和的一半.………………7分

證明:如圖,延長(zhǎng)BA,交圓于點(diǎn)D,延長(zhǎng)CA,交圓于點(diǎn)E,連接CD

∵∠BAC是△ACD 的一個(gè)外角,

∴∠BAC=∠C+∠D.……9分

∵圓周角的度數(shù)等于它所對(duì)的弧的度數(shù)的一半(已在情境一中證明),

∴∠C,∠D

∴∠BAC=∠C +∠D().……11分

∴命題成立.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

我們知道:頂點(diǎn)在圓上,并且兩邊都和圓相交的角叫做圓周角,一條弧所對(duì)的圓周角的度數(shù)等于它所對(duì)的精英家教網(wǎng)圓心角度數(shù)的一半.類(lèi)似地,我們定義:頂點(diǎn)在圓外,并且兩邊都和圓相交的角叫做圓外角.
(1)判斷:圖中有沒(méi)有圓外角如果有,請(qǐng)用字母表示出來(lái).
(2)運(yùn)用所學(xué)的數(shù)學(xué)知識(shí),探究:圓外角的度數(shù)與它所夾的弧所對(duì)的圓心角的度數(shù)有什么關(guān)系將你的發(fā)現(xiàn),用文字表述出來(lái),并說(shuō)明理由.(2007年唐洋鎮(zhèn)中學(xué)初三模擬考試數(shù)學(xué)試卷改編)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2012•南京二模)情境一
我們知道:頂點(diǎn)在圓上,并且兩邊都和圓相交的角叫做圓周角.
我們還知道:①圓心角的度數(shù)等于與它所對(duì)的弧的度數(shù),②同弧所對(duì)的圓周角相等,都等于該弧所對(duì)的圓心角的一半.由此,小明得到一個(gè)正確的結(jié)論:圓周角的度數(shù)等于它所對(duì)的弧的度數(shù)的一半.如圖1,∠LMN=
1
2
LN

問(wèn)題1  填空:如圖1,如果
LN
的度數(shù)是80,那么∠LMN的度數(shù)是
40
40

情境二
小明把頂點(diǎn)在圓外,并且兩邊都和圓相交的角叫圓外角,并繼續(xù)探索.
如圖2,∵∠PTQ是△OPT的一個(gè)外角,
∴∠PTQ=∠O+∠P.
∴∠O=∠PTQ-∠P.
∵圓周角的度數(shù)等于它所對(duì)的弧的度數(shù)的一半(已在情境一中證明),
∴∠PTQ=
1
2
PQ
,∠P=
1
2
RT

∴∠O=∠PTQ-∠P=
1
2
PQ
-
1
2
RT
=
1
2
PQ
-
RT
).
經(jīng)歷了上述探索、證明過(guò)程,小明發(fā)現(xiàn)了“圓外角的度數(shù)等于它所夾的較大弧的度數(shù)減去較小弧的度數(shù)所得差的一半”這個(gè)正確結(jié)論.
問(wèn)題2  填空:如圖2,如果
PQ
=80°,
RT
=20°,那么∠O=
30
30
°.
問(wèn)題3  類(lèi)比情境二的內(nèi)容,請(qǐng)你就角的頂點(diǎn)在圓內(nèi)的情況進(jìn)行探索.寫(xiě)出你的發(fā)現(xiàn),并證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題

情境一
我們知道:頂點(diǎn)在圓上,并且兩邊都和圓相交的角叫做圓周角.
我們還知道:①圓心角的度數(shù)等于與它所對(duì)的弧的度數(shù),②同弧所對(duì)的圓周角相等,都等于該弧所對(duì)的圓心角的一半.由此,小明得到一個(gè)正確的結(jié)論:圓周角的度數(shù)等于它所對(duì)的弧的度數(shù)的一半.如圖1,∠LMN=數(shù)學(xué)公式數(shù)學(xué)公式
問(wèn)題1  填空:如圖1,如果數(shù)學(xué)公式的度數(shù)是80,那么∠LMN的度數(shù)是________.
情境二
小明把頂點(diǎn)在圓外,并且兩邊都和圓相交的角叫圓外角,并繼續(xù)探索.
如圖2,∵∠PTQ是△OPT的一個(gè)外角,
∴∠PTQ=∠O+∠P.
∴∠O=∠PTQ-∠P.
∵圓周角的度數(shù)等于它所對(duì)的弧的度數(shù)的一半(已在情境一中證明),
∴∠PTQ=數(shù)學(xué)公式數(shù)學(xué)公式,∠P=數(shù)學(xué)公式數(shù)學(xué)公式
∴∠O=∠PTQ-∠P=數(shù)學(xué)公式數(shù)學(xué)公式-數(shù)學(xué)公式數(shù)學(xué)公式=數(shù)學(xué)公式數(shù)學(xué)公式).
經(jīng)歷了上述探索、證明過(guò)程,小明發(fā)現(xiàn)了“圓外角的度數(shù)等于它所夾的較大弧的度數(shù)減去較小弧的度數(shù)所得差的一半”這個(gè)正確結(jié)論.
問(wèn)題2  填空:如圖2,如果數(shù)學(xué)公式=80°,數(shù)學(xué)公式=20°,那么∠O=________°.
問(wèn)題3  類(lèi)比情境二的內(nèi)容,請(qǐng)你就角的頂點(diǎn)在圓內(nèi)的情況進(jìn)行探索.寫(xiě)出你的發(fā)現(xiàn),并證明你的結(jié)論.
作業(yè)寶

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2012年江蘇省南京市聯(lián)合體中考數(shù)學(xué)二模試卷(解析版) 題型:解答題

情境一
我們知道:頂點(diǎn)在圓上,并且兩邊都和圓相交的角叫做圓周角.
我們還知道:①圓心角的度數(shù)等于與它所對(duì)的弧的度數(shù),②同弧所對(duì)的圓周角相等,都等于該弧所對(duì)的圓心角的一半.由此,小明得到一個(gè)正確的結(jié)論:圓周角的度數(shù)等于它所對(duì)的弧的度數(shù)的一半.如圖1,∠LMN=
問(wèn)題1  填空:如圖1,如果的度數(shù)是80,那么∠LMN的度數(shù)是______.
情境二
小明把頂點(diǎn)在圓外,并且兩邊都和圓相交的角叫圓外角,并繼續(xù)探索.
如圖2,∵∠PTQ是△OPT的一個(gè)外角,
∴∠PTQ=∠O+∠P.
∴∠O=∠PTQ-∠P.
∵圓周角的度數(shù)等于它所對(duì)的弧的度數(shù)的一半(已在情境一中證明),
∴∠PTQ=,∠P=
∴∠O=∠PTQ-∠P=-=).
經(jīng)歷了上述探索、證明過(guò)程,小明發(fā)現(xiàn)了“圓外角的度數(shù)等于它所夾的較大弧的度數(shù)減去較小弧的度數(shù)所得差的一半”這個(gè)正確結(jié)論.
問(wèn)題2  填空:如圖2,如果=80°,=20°,那么∠O=______°.
問(wèn)題3  類(lèi)比情境二的內(nèi)容,請(qǐng)你就角的頂點(diǎn)在圓內(nèi)的情況進(jìn)行探索.寫(xiě)出你的發(fā)現(xiàn),并證明你的結(jié)論.

查看答案和解析>>

同步練習(xí)冊(cè)答案