【題目】如圖,點E在正方形ABCD的邊AB上,連接DE,過點CCFDEF,過點AAGCFDE于點G

1)求證:DCF≌△ADG

2)若點EAB的中點,設(shè)DCF=α,求sinα的值.

【答案】1)證明見解析

2sinα=

【解析】

試題分析:1正方形的性質(zhì)AD=DC,ADC=90°,根據(jù)垂直的定義求出CFD=CFG=90°,再根據(jù)兩直線平行,內(nèi)錯角相等求出AGD=CFG=90°,從而得到AGD=CFD,再根據(jù)同角的余角相等求ADG=DCF,然后利用角角邊證明DCFADG全等即可

2)設(shè)正方形ABCD的邊長為2a,表示出AE,再利用勾股定理列式求出DE,然后根據(jù)銳角的正弦等于對邊比斜邊求出ADG的正弦,即為α的正弦。 

解:(1)證明:在正方形ABCD中,AD=DC,ADC=90°

CFDE,∴∠CFD=CFG=90°。

AGCF,∴∠AGD=CFG=90°。∴∠AGD=CFD。

∵∠ADG+CDE=ADC=90°,DCF+CDE=90°,∴∠ADG=DCF

DCFADG中,AGD=CFD,ADG=DCF,AD=DC,

∴△DCF≌△ADGAAS)。

2)設(shè)正方形ABCD的邊長為2a,

EAB的中點,AE=×2a=a

RtADE中,

。

∵∠ADG=DCF=α,sinα=

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,正方形的對角線交于點,直角三角形繞點按逆時針旋轉(zhuǎn),

1)若直角三角形繞點逆時針轉(zhuǎn)動過程中分別交兩邊于兩點

①求證:;

②連接,那么有什么樣的關(guān)系?試說明理由

2)若正方形的邊長為2,則正方形兩個圖形重疊部分的面積為多少?(不需寫過程直接寫出結(jié)果)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖 ,在平面直角坐標(biāo)系中,邊長為 1 的正方形OA1B1C 的對角線 A1C OB1 交于點 M1,以 M1A1為對角線作第二個正方形 A2A1B2M1對角線 A1M1A2 B2 交于點 M 2 ;以 M 2 A1 為對角線作第三個正方形 A3 A1B3M 2,對角線 A1M 2 A3 B3 交于點 M 3 ;…,依此類推,那么 M 1 的坐標(biāo)為_____;這樣作的第 n 個正方形的對角線交點 Mn 的坐標(biāo)為_____.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知菱形ABCD的邊長為5,∠DAB=60°.將菱形ABCD繞著A逆時針旋轉(zhuǎn)得到菱形AEFG,設(shè)∠EAB=α,且0°<α<90°,連接DG、BE、CE、CF.

(1)如圖(1),求證:△AGD≌△AEB;

(2)當(dāng)α=60°時,在圖(2)中畫出圖形并求出線段CF的長;

(3)若∠CEF=90°,在圖(3)中畫出圖形并求出△CEF的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】沾益區(qū)興隆水果店計劃用1000元購進(jìn)甲、乙兩種新出產(chǎn)的水果140千克,這兩種水果的進(jìn)價、售價如下表所示:

進(jìn)價(元/千克)

售價(元/千克)

5

8

9

13

(1)這兩種水果各購進(jìn)多少千克?

(2)該水果店全部銷售完這批水果時獲利多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在矩形ABCD中,AD4,E,F分別為邊AB,CD上一動點,AECF,分別以DE,BF為對稱軸翻折△ADE,△BCF,點AC的對稱點分別為P,Q.若點P,Q,E,F恰好在同一直線上,且PQ1,則EF的長為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,一次函數(shù)分別交y軸、x 軸于AB兩點,拋物線A、B兩點.

1)求這個拋物線的解析式;

2)作垂直x軸的直線x=t,在第一象限交直線AB于點M,交這個拋物線于點N.求當(dāng)t 取何值時,MN有最大值?最大值是多少?

3)在2)的情況下,以A、M、N、D為頂點作平行四邊形,求第四個頂點D的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】1)在下列橫線上用含有的代數(shù)式表示相應(yīng)圖形的面積.

                         

(2)通過拼圖,你發(fā)現(xiàn)前三個圖形的面積與第四個圖形面積之間有什么關(guān)系?請用數(shù)學(xué)式子表達(dá):                 

3)利用(2)的結(jié)論計算的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系xOy中,A(0,5),直線x=-5x軸交于點D,直線y=-xx軸及直線x=-5分別交于點C,E.BE關(guān)于x軸對稱,連接AB.

(1)求點C,E的坐標(biāo)及直線AB的解析式;

(2)SSCDES四邊形ABDO,求S的值;

(3)在求(2)S時,嘉琪有個想法:CDE沿x軸翻折到CDB的位置,而CDB與四邊形ABDO拼接后可看成AOC,這樣求S便轉(zhuǎn)化為直接求AOC的面積,如此不更快捷嗎?但大家經(jīng)反復(fù)驗算,發(fā)現(xiàn)SAOCS,請通過計算解釋他的想法錯在哪里.

查看答案和解析>>

同步練習(xí)冊答案