【題目】如圖,在平面直角坐標(biāo)系中,拋物線交軸、兩點(diǎn)(在的左側(cè)),且,,與軸交于,拋物線的頂點(diǎn)坐標(biāo)為.
(1)求、兩點(diǎn)的坐標(biāo);
(2)求拋物線的解析式;
(3)過點(diǎn)作直線軸,交軸于點(diǎn),點(diǎn)是拋物線上、兩點(diǎn)間的一個(gè)動(dòng)點(diǎn)(點(diǎn)不與、兩點(diǎn)重合),、與直線分別交于點(diǎn)、,當(dāng)點(diǎn)運(yùn)動(dòng)時(shí),是否為定值?若是,試求出該定值;若不是,請(qǐng)說明理由.
【答案】(1)點(diǎn)坐標(biāo),點(diǎn)坐標(biāo);(2);(3)是定值,定值為8
【解析】
(1)由OA、OB的長(zhǎng)可得A、B兩點(diǎn)坐標(biāo);
(2)結(jié)合題意可設(shè)拋物線的解析式為,將點(diǎn)C坐標(biāo)代入求解即可;
(3)過點(diǎn)作軸交軸于,設(shè),可用含t的代數(shù)式表示出,,的長(zhǎng),利用,的性質(zhì)可得EF、EG的長(zhǎng),相加可得結(jié)論.
(1)由拋物線交軸于、兩點(diǎn)(在的左側(cè)),且,
,得
點(diǎn)坐標(biāo),點(diǎn)坐標(biāo);
(2)設(shè)拋物線的解析式為,
把點(diǎn)坐標(biāo)代入函數(shù)解析式,得
,
解得,
拋物線的解析式為
;
(3)(或是定值),理由如下:
過點(diǎn)作軸交軸于,如圖
設(shè),
則,,
,
∵,
∴,
∴,
∴
又∵,
∴,
∴,
∴
∴
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系xOy中,點(diǎn)A的坐標(biāo)為(0,7),點(diǎn)B的坐標(biāo)為(0,3),點(diǎn)C的坐標(biāo)為(3,0).
(1)在圖中作出△ABC的外接圓(利用格圖確定圓心);
(2)圓心坐標(biāo)為 ;外接圓半徑r為 ;
(2)若在x軸的正半軸上有一點(diǎn)D,且∠ADB=∠ACB,則點(diǎn)D的坐標(biāo)為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某公司根據(jù)市場(chǎng)需求銷售A、B兩種型號(hào)的凈水器,每臺(tái)A型凈水器比每臺(tái)B型凈水器進(jìn)價(jià)多200元,用5萬元購進(jìn)A型凈水器與用4.5萬元購進(jìn)B型凈水器的數(shù)量相等.
(1)求每臺(tái)A型、B型凈水器的進(jìn)價(jià)各是多少元?
(2)該公司計(jì)劃用不超過9.8萬元購進(jìn)A,B兩種型號(hào)的凈水器共50臺(tái),其中A型、B型凈水器每臺(tái)售價(jià)分別為2500元、2180元,設(shè)A型凈水器為x臺(tái).
①求x的取值范圍.
②若公司決定從銷售A型凈水器的利潤(rùn)中每臺(tái)捐獻(xiàn)a(100<a<150)元給貧困村飲水改造愛心工程,求售完這50臺(tái)凈水器后獲得的最大利潤(rùn).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:t1,t2是方程t2+2t﹣24=0的兩個(gè)實(shí)數(shù)根,且t1<t2,拋物線y=x2+bx+c的圖象經(jīng)過點(diǎn)A(t1,0),B(0,t2).
(1)求這個(gè)拋物線的解析式;
(2)設(shè)點(diǎn)P(x,y)是拋物線上一動(dòng)點(diǎn),且位于第三象限,四邊形OPAQ是以OA為對(duì)角線的平行四邊形,求平行四邊形OPAQ的面積S與x之間的函數(shù)關(guān)系式,并寫出自變量x的取值范圍;
(3)在(2)的條件下,當(dāng)平行四邊形OPAQ的面積為24時(shí),是否存在這樣的點(diǎn)P,使OPAQ為正方形?若存在,求出P點(diǎn)坐標(biāo);若不存在,說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知,點(diǎn)M為二次函數(shù)y=x2+2bx+3c圖象的頂點(diǎn),一次函數(shù)y=kx﹣3(k>0)分別交x軸,y軸于點(diǎn)A,B.
(1)若b=1,c=1,判斷頂點(diǎn)M是否在直線y=2x+1上,并說明理由;
(2)若該二次函數(shù)圖象經(jīng)過點(diǎn)C(1,﹣4),也經(jīng)過點(diǎn)A,B,且滿足kx﹣3<x2+2bx+3c,求該一次函數(shù)解析式,并直接寫出自變量x的取值范圍;
(3)設(shè)點(diǎn)P坐標(biāo)為(m,n)在二次函數(shù)y=x2+2bx+3c上,當(dāng)﹣2≤m≤2時(shí),b﹣24≤n≤2b+4,試問:當(dāng)b≥2或b≤﹣2時(shí),對(duì)于該二次函數(shù)中任意的自變量x,函數(shù)值y是否始終大于﹣40?請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線y=x2+mx+m(m>0)的頂點(diǎn)為A,交y軸于點(diǎn)C.
(1)求出點(diǎn)A的坐標(biāo)(用含m的式子表示);
(2)若直線y=﹣x+n經(jīng)過點(diǎn)A,與拋物線交于另一點(diǎn)B,證明:AB的長(zhǎng)是定值;
(3)連接AC,延長(zhǎng)AC交x軸于點(diǎn)D,作直線AD關(guān)于x軸對(duì)稱的直線,與拋物線分別交于E、F兩點(diǎn).若∠ECF=90°,求m的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】2016年,某貧困戶的家庭年人均純收入為2500元,通過政府產(chǎn)業(yè)扶持,發(fā)展了養(yǎng)殖業(yè)后,到2018年,家庭年人均純收入達(dá)到了3600元.
(1)求該貧困戶2016年到2018年家庭年人均純收入的年平均增長(zhǎng)率;
(2)若年平均增長(zhǎng)率保持不變,2019年該貧困戶的家庭年人均純收入是否能達(dá)到4200元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】校園內(nèi)有一個(gè)由兩個(gè)全等的六邊形(邊長(zhǎng)為)圍成的花壇,現(xiàn)將這個(gè)花壇在原有的基礎(chǔ)上擴(kuò)建成如圖所示的一個(gè)菱形區(qū)域,并在新擴(kuò)建的部分種上草坪,則擴(kuò)建后菱形區(qū)域的周長(zhǎng)為( )
A.B.C.D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】《九章算術(shù)》是中國傳統(tǒng)數(shù)學(xué)最重要的著作,在“勾股”章中有這樣一個(gè)問題:“今有邑方二百步,各中開門,出東門十五步有木,問:出南門幾步面見木?”用今天的話說,大意是:如圖,DEFG是一座邊長(zhǎng)為200步(“步”是古代的長(zhǎng)度單位)的正方形小城,東門H位于GD的中點(diǎn),南門K位于ED的中點(diǎn),出東門15步的A處有一樹木,求出南門多少步恰好看到位于A處的樹木(即點(diǎn)D在直線AC上)?請(qǐng)你計(jì)算KC的長(zhǎng)為多少步.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com