【題目】如圖,已知AB為⊙O的直徑,AC為弦,ODBC,交ACD,BC=4cm.

(1)求證:ACOD;

(2)求OD的長;

(3)若2sinA﹣1=0,求⊙O的直徑.

【答案】1)見解析;(2)2cm;(3)8cm.

【解析】試題分析:(1)根據(jù)直徑所對的圓周角是直角可得∠C=90°,再根據(jù)兩直線平行,同位角相等可得∠ADO=C=90°,然后根據(jù)垂直的定義證明即可;

2)先判斷出ODABC的中位線,再根據(jù)三角形的中位線平行于第三邊并且等于第三邊的一半可得OD=BC

3)先根據(jù)∠A的正弦求出∠A=30°,再根據(jù)直角三角形30°角所對的直角邊等于斜邊的一半可得BC=AB,然后求解即可.

試題解析:1)證明:∵AB是⊙O的直徑,

∴∠C=90°,

ODBC,

∴∠ADO=C=90°,

ACOD

2)解:∵ODBC,OAB的中點,

ODABC的中位線,

OD=BC=×4=2cm;

3)解:∵2sinA﹣1=0,

sinA=

∴∠A=30°

RtABC,∵∠A=30°,

BC=AB

AB=2BC=8cm

即⊙O的直徑是8cm

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】甲、乙兩車分別從AB兩地同時出發(fā),甲車勻速前往B地,到達B地立即以另一速度按原路勻速返回到A地;乙車勻速前往A地,設(shè)甲、乙兩車距A地的路程為y(千米),甲車行駛的時間為x(時),yx之間的函數(shù)圖象如圖所示

1)求甲車從A地到達B地的行駛時間;

2)求甲車返回時yx之間的函數(shù)關(guān)系式,并寫出自變量x的取值范圍;

3)求乙車到達A地時甲車距A地的路程.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,點A在函數(shù)y=(x>0)圖象上,過點A作x軸和y軸的平行線分別交函數(shù)y=圖象于點B,C,直線BC與坐標軸的交點為D,E.

(1)當點C的橫坐標為1時,求點B的坐標;

(2)試問:當點A在函數(shù)y=(x>0)圖象上運動時,△ABC的面積是否發(fā)生變化?若不變,請求出△ABC的面積,若變化,請說明理由.

(3)試說明:當點A在函數(shù)y=(x>0)圖象上運動時,線段BD與CE的長始終相等.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,四邊形ABCD的兩個外角∠CBE,∠CDF的平分線交于點G,若∠A=52°,∠DGB=28°,則∠DCB的度數(shù)是(  )

A. 152°B. 128°C. 108°D. 80°

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,某校一幢教學大樓的頂部豎有一塊傳承文明,啟智求真的宣傳牌CD.小明在山坡的坡腳A處測得宣傳牌底部D的仰角為60°,沿山坡向上走到B處測得宣傳牌頂部C的仰角為45°已知山坡AB的坡度i=1:,AB=10米,AE=15米,求這塊宣傳牌CD的高度(測角器的高度忽略不計,結(jié)果精確到0.1米參考數(shù)據(jù):1.414,1.732)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系xOy中,A點的坐標為(1,0).以OA為邊在x軸上方畫一個正方形OABC.以原點O為圓心,正方形的對角線OB長為半徑畫弧,與x軸正半軸交于點D

1)點D的坐標是 ;

2)點Px,y),其中x,y滿足2x-y=-4

①若點P在第三象限,且OPD的面積為3,求點P的坐標;

②若點P在第二象限,判斷點E+10)是否在線段OD上,并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】為了響應低碳環(huán)保,綠色出行的公益活動,小燕和媽媽決定周日騎自行車去圖書館借書.她們同時從家出發(fā),小燕先以150/分的速度騎行一段時間,休息了5分鐘,再以m/分鐘的速度到達圖書館,而媽媽始終以120/分鐘的速度騎行,兩人行駛的路程y(米)與時間x(分鐘)的關(guān)系如圖,請結(jié)合圖像,解答下列問題:

1)圖書館到小燕家的距離是 米;

2a= b= ,m=

3)媽媽行駛的路程y(米)關(guān)于時間x(分鐘)的函數(shù)解析式是 ;定義域是 .

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,□ABCD的兩個頂點B,D都在拋物線y=x2+bx+c上,且OB=OC,AB=5tanACB=

1)求拋物線的解析式;

2)在拋物線上是否存在點E,使以A,CD,E為頂點的四邊形是菱形?若存在,請求出點E的坐標;若不存在,請說明理由.

3)動點P從點A出發(fā)向點D運動,同時動點Q從點C出發(fā)向點A運動,運動速度都是每秒1個單位長度,當一個點到達終點時另一個點也停止運動,運動時間為t(秒).當t為何值時,APQ是直角三角形?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】1)如圖,直線a,b被直線c所截,ab,∠1=∠2.若∠340°,則∠4等于________

2)如圖,將三角形ABC沿BC方向平移3 cm得到三角形DEF,如果四邊形ABFD周長是28 cm,則三角形ABC的周長是________cm.

查看答案和解析>>

同步練習冊答案