【題目】如圖,在四邊形ABCD中,ABAD,CDBC,以AB為直徑的交AD于點(diǎn)E,CDED,連接BD交⊙O于點(diǎn)F.判斷BC與⊙O的位置關(guān)系.

【答案】證明見解析

【解析】

連接BE,利用HL定理先證明RtBEDRtBCD,得出∠ADB=∠CDB,再利用平行線的運(yùn)用進(jìn)一步證明即可

證明:連接BE,

AB是⊙O的直徑,

∴∠AEB90°,

∵∠C90°

∴∠C=∠BED90°,

RtBEDRtBCD中BD=BD,DE=DC

RtBEDRtBCDHL),

∴∠ADB=∠CDB,

ADAB,

∴∠ADB=∠DBA

∴∠CDB=∠DBA,

DCAB

∵∠C90°,

∴∠ABC90°,

AB是⊙O直徑,

BC與⊙O相切.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】《九章算術(shù)》是中國傳統(tǒng)數(shù)學(xué)重要的著作,奠定了中國傳統(tǒng)數(shù)學(xué)的基本框架《九章算術(shù)》中記

載:今有圓材,埋在壁中,不知大小,以鋸鋸之,深一寸,鋸道長一尺,間徑幾何?如圖

閱讀完這段文字后,小智畫出了一個(gè)圓柱截面示意圖如圖,其中BOCD于點(diǎn)A,求間徑就是要求O的直徑再次閱讀后,發(fā)現(xiàn)AB=______寸,CD=____一尺等于十寸,通過運(yùn)用有關(guān)知識(shí)即可解決這個(gè)問題請(qǐng)你補(bǔ)全題目條件,并幫助小求出O的直徑

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在正方形ABCD和正方形DEFG中,點(diǎn)GCD上,DE=2,將正方形DEFG繞點(diǎn)D順時(shí)針旋轉(zhuǎn)60°,得到正方形DEFG′,此時(shí)點(diǎn)G′在AC上,連接CE′,則CE′+CG′=(  )

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,有長為30m的籬笆,一面利用墻(墻的最大可用長度為10m),圍成中間隔有一道籬笆(平行于AB)的矩形花圃,設(shè)花圃的一邊ABxm,面積為ym2

1)求yx的函數(shù)關(guān)系式;

2)如果要圍成面積為48m2的花圃,AB的長是多少?

3)能圍成比48m2更大的花圃嗎?如果能,請(qǐng)求出最大面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,拋物線與直線交于,兩點(diǎn),且點(diǎn)軸上,點(diǎn)軸的正半軸上.

1)直接寫出點(diǎn)的坐標(biāo);

2)若,求直線的解析式;

3)若,求的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知等邊三角形的邊長為,點(diǎn)為平面內(nèi)一動(dòng)點(diǎn),且,將點(diǎn)繞點(diǎn)按逆時(shí)針方向轉(zhuǎn)轉(zhuǎn),得到點(diǎn),連接,則的最大值__________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】直角三角形紙片ABC中,∠ACB=90°,AC≤BC,如圖,將紙片沿某條直線折疊,使點(diǎn)A落在直角邊BC上,記落點(diǎn)為D,設(shè)折痕與AB、AC邊分別交于點(diǎn)EF

1)如果∠AFE=65°,求∠CDF的度數(shù);

2)若折疊后的CDFBDE均為等腰三角形,那么紙片中∠B的度數(shù)是多少?寫出你的計(jì)算過程,并畫出符合條件的折疊后的圖形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在矩形中,,.點(diǎn)從點(diǎn)出發(fā),沿運(yùn)動(dòng),速度為每秒2個(gè)單位長度;點(diǎn)從點(diǎn)出發(fā)向點(diǎn)運(yùn)動(dòng),速度為每秒1個(gè)單位長度.、兩點(diǎn)同時(shí)出發(fā),點(diǎn)運(yùn)動(dòng)到點(diǎn)時(shí),兩點(diǎn)同時(shí)停止運(yùn)動(dòng),設(shè)點(diǎn)的運(yùn)動(dòng)時(shí)間為(秒).連結(jié)、、.

1)點(diǎn)到點(diǎn)時(shí),____________;當(dāng)點(diǎn)到終點(diǎn)時(shí),的長度為_________;

2)用含的代數(shù)式表示的長;

3)當(dāng)的面積為9時(shí),求的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平行四邊形ABCD中,過點(diǎn)BBE⊥CD,垂足為E,連接AE,FAE上的一點(diǎn),且∠BFE ∠C

1)求證:△ABF∽△EAD;

2)若AB4,∠BAE30°,求AE的長;

3)在(1)、(2)的條件下,若AD3,求BF的長(計(jì)算結(jié)果可含根號(hào))

查看答案和解析>>

同步練習(xí)冊答案