【題目】如圖,AD為△ABC的中線,AB=AC,∠BAC=45.過點C 作CE⊥AB,垂足為E,CE與AD交于點F.
(1)求證: △AEF≌△CEB;
(2)試探索AF與CD的數(shù)量關(guān)系,并說明理由.
【答案】(1) 見解析;(2) ,理由見解析
【解析】
(1)根據(jù)三線合一可得:,AD⊥BC,從而得出∠ADB=90°,然后根據(jù)等腰直角三角形的判定,可得△AEC為等腰直角三角形,從而得出AE=CE,再根據(jù)同角的余角相等可得∠BAD =∠ECB,最后利用ASA即可證出△AEF≌△CEB;
(2)根據(jù)全等三角形的性質(zhì)可得:AF=CB,從而得出.
解:(1)∵AD為△ABC的中線,AB=AC,
∴,AD⊥BC,
∴∠ADB=90°
∴∠BAD+∠B=90°
∵CE⊥AB,∠BAC=45
∴∠BEC=∠FEA=90°,△AEC為等腰直角三角形
∴∠ECB+∠B=90°,AE=CE
∴∠BAD =∠ECB
在△AEF和△CEB中
∴△AEF≌△CEB;
(2),理由如下:
∵△AEF≌△CEB
∴AF=CB
∵
∴
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形ABCD中,AB=AD,AC=5,∠DAB=∠DCB=90°,則四邊形ABCD的面積為( 。
A. 15 B. 12.5 C. 14.5 D. 17
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某商場為了吸引顧客,設(shè)置了兩種促銷方式.一種方式是:讓顧客通過轉(zhuǎn)轉(zhuǎn)盤獲得購物券.規(guī)定顧客每購買100元的商品,就能獲得一次轉(zhuǎn)轉(zhuǎn)盤的機會,如果轉(zhuǎn)盤停止后,指針正好對準(zhǔn)100元、50元、20元的相應(yīng)區(qū)域,那么顧客就可以分別獲得100元、50元、20元購物券,憑購物券可以在該商場繼續(xù)購物;如果指針對準(zhǔn)其他區(qū)域,那么就不能獲得購物券.另一種方式是:不轉(zhuǎn)轉(zhuǎn)盤,顧客每購買100元的商品,可直接獲得10元購物券.據(jù)統(tǒng)計,一天中共有1 000人次選擇了轉(zhuǎn)轉(zhuǎn)盤的方式,其中指針落在100元、50元、20元的次數(shù)分別為50次、100次、200次.
(1)指針落在不獲獎區(qū)域的概率約是多少?
(2)通過計算說明選擇哪種方式更合算?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知直線y=﹣2x+8與x軸、y軸分別交于點A、C,以O(shè)A、OC為邊在第一象限內(nèi)作長方形OABC.
(1)求點A、C的坐標(biāo);
(2)將△ABC對折,使得點A的與點C重合,折痕交AB于點D,求直線CD的解析式;
(3)在(2)的條件下,坐標(biāo)平面內(nèi)是否存在點P(除點B外),使得△APC與△ABC全等?若存在,直接寫出符合條件的點P的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,將長方形紙片ABCD對折后再展開,得到折痕EF,M是BC上一點,沿著AM再次折疊紙片,使得點B恰好落在折痕EF上的點B′處,連接AB′、BB′.
判斷△AB′B的形狀為 ;
若P為線段EF上一動點,當(dāng)PB+PM最小時,請描述點P的位置為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,以△ABC的邊AB為直徑的⊙O分別交BC、AC于F、G,且G是的中點,過點G作DE⊥BC,垂足為E,交BA的延長線于點D
(1)求證:DE是的⊙O切線;
(2)若AB=6,BG=4,求BE的長;
(3)若AB=6,CE=1.2,請直接寫出AD的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知,直線分別交軸軸于、兩點,、的長滿足,點是直線上一點,且.
求直線的解析式;
求過點的反比例函數(shù)解析式;
點在反比例函數(shù)圖象上是否存在一點,使以點、、、為頂點,為腰的四邊形為梯形?若存在,請直接寫出點的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,將△ABC分別沿AB,AC翻折得到△ABD 和△AEC,線段BD與AE交于點 F,連接BE .
(1)如果∠ABC=16,∠ACB=30°,求∠DAE的度數(shù);
(2)如果BD⊥CE,求∠CAB 的度數(shù).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com