【題目】如圖,數(shù)軸的單位長度為1

1)如果點表示的數(shù)互為相反數(shù),那么點表示的數(shù)是_______,點表示的數(shù)是_______;

2)如果點表示的數(shù)互為相反數(shù),那么四點中,點_______表示的數(shù)的絕對值最大,請簡要說明理由;

3)當(dāng)點為原點時,若存在一點到點的距離是點到點的距離的2倍,則點所表示的數(shù)是_______

【答案】1-1,2;(2A,理由見解析;(3210.

【解析】

1)根據(jù)點表示的數(shù)互為相反數(shù)確定原點的位置,即可得到點B、C表示的數(shù);

2)先確定原點的位置,得到四個點所表示的數(shù),再比較絕對值大小即可;

3)先確定點A、D表示的數(shù)及AD的長,根據(jù)點到點的距離是點到點的距離的2倍,分兩種情況求出DM的長得到點M的坐標(biāo).

1)∵點表示的數(shù)互為相反數(shù),

∴原點在點B右側(cè)一個單位的位置,

∴點B表示的數(shù)是-1,點C表示的數(shù)是2,

故答案為:-12;

2

∵點表示的數(shù)互為相反數(shù),

∴原點在點B右側(cè)2個單位的位置,

∴點A、B、C、D所表示的數(shù)分別是-4、-2、1、2

-4的絕對值最大,

∴點A表示的數(shù)的絕對值最大,

故答案為:A;

3)當(dāng)點B在原點時,點A表示的數(shù)是-2,點D表示的數(shù)是4,∴AD=6,

∵點到點的距離是點到點的距離的2倍,

AM=2DM,

當(dāng)點MAD之間時,3DM=AD,DM=2,∴點M表示的數(shù)是2;

當(dāng)點M在點D右側(cè)時,DM=AD,DM=6,∴點M表示的數(shù)是10,

故答案為:210.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在正方形ABCD中,AD=6,點E是邊CD上的動點(點E不與端點C,D重合),AE的垂直平分線FG分別交AD,AE,BC于點F,H,G.當(dāng)=時,DE的長為( )

A. 2 B. C. D. 4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點O在直線AB上,OD是∠AOC的平分線,OE是∠BOC的平分線.

1)圖中與∠AOD互余的角是     ,與∠COE互補的角是     ;(把符合條件的角都寫出來)

2)求∠DOE的度數(shù);

3)如果∠BOF=51°34',∠COE=38°43',請畫出射線OF,求∠COF的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖:四邊形ABDC,CD=BD,EAB上一點,連接DE,且∠CDE=B.若∠CAD=BAD=30°,AC=5,AB=3,EB=______________。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知,四邊形ABCD是菱形,M、N分別在AB、AD,BM=DN,MGAD,NFAB,F、G分別在BCCD,MGNF相交于點E;

(1)如圖,求證:四邊形AMEN是菱形;

(2)如圖,連接AC,在不添加任何輔助線的情況下,請直接寫出面積相等的四邊形;

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】“珍重生命,注意安全!”同學(xué)們在上下學(xué)途中一定要注意騎車安全.小明騎單車上學(xué),當(dāng)他騎了一段時間,想起要買某本書,于是又折回到剛經(jīng)過的新華書店,買到書后繼續(xù)去學(xué)校,以下是他本次所用的時間與路程的關(guān)系示意圖.根據(jù)圖中提供的信息回答下列問題:

(1)圖中自變量是______,因變量是______;

(2)小明家到學(xué)校的路程是 米;

(3)小明在書店停留了 分鐘;

(4)本次上學(xué)途中,小明一共行駛了 米,一共用了 分鐘;

(5)我們認(rèn)為騎單車的速度超過300米/分鐘就超越了安全限度.問:在整個上學(xué)的途中哪個時間段小明騎車速度最快,速度在安全限度內(nèi)嗎?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABE△ADC△ABC分別沿著AB、AC邊翻折180°形成的,若∠1:∠2:∠3=28:5:3,則∠α的度數(shù)為__度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:在四邊形ABCD中,ABC=∠ADC=90,M、N分別是CDBC上的點

求作:點M、N,使AMN的周長最小

作法:如圖,

(1)延長AD,在AD的延長線上截取DA=DA;

(2)延長AB,在AB的延長線上截取B A″=BA;

(3)連接A′A″,分別交CD、BC于點MN則點M、N即為所求作的點

請回答:這種作法的依據(jù)是_____________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某物流公司的快遞車和貨車每天沿同一條路線往返于A、B兩地,快遞車比貨車多往返一趟.如圖所示,表示貨車距離A地的路程y(單位:h)與所用時間x(單位h)的圖像,其間在B地裝卸貨物2h.已知快遞車比貨車早1h出發(fā),最后一次返回A地比貨車晚1h若快遞車往返途中速度不變,且在A、B兩地均不停留,則兩車在往返途中相遇的次數(shù)為________次.

查看答案和解析>>

同步練習(xí)冊答案