【題目】平行四邊形ABCD的兩個(gè)頂點(diǎn)A、C在反比例函數(shù)y= (k≠0)圖象上,點(diǎn)B、D在x軸上,且B、D兩點(diǎn)關(guān)于原點(diǎn)對(duì)稱,AD交y軸于P點(diǎn)

(1)已知點(diǎn)A的坐標(biāo)是(2,3),求k的值及C點(diǎn)的坐標(biāo);
(2)若△APO的面積為2,求點(diǎn)D到直線AC的距離.

【答案】
(1)解:∵點(diǎn)A的坐標(biāo)是(2,3),平行四邊形ABCD的兩個(gè)頂點(diǎn)A、C在反比例函數(shù)y= (k≠0)圖象上,點(diǎn)B、D在x軸上,且B、D兩點(diǎn)關(guān)于原點(diǎn)對(duì)稱,

∴3= ,點(diǎn)C與點(diǎn)A關(guān)于原點(diǎn)O對(duì)稱,

∴k=6,C(﹣2,﹣3),

即k的值是6,C點(diǎn)的坐標(biāo)是(﹣2,﹣3)


(2)解:∵△APO的面積為2,點(diǎn)A的坐標(biāo)是(2,3),

,得OP=2,

設(shè)過點(diǎn)P(0,2),點(diǎn)A(2,3)的直線解析式為y=ax+b,

解得, ,

即直線PC的解析式為y= ,

將y=0代入y= ,得x═﹣4,

∴OP=4,

∵A(2,3),C(﹣2,﹣3),

∴AC= ,

設(shè)點(diǎn)D到AC的距離為m,

∵SACD=SODA+SODC

,

解得,m=

即點(diǎn)D到直線AC的距離是


【解析】(1)根據(jù)點(diǎn)A的坐標(biāo)是(2,3),平行四邊形ABCD的兩個(gè)頂點(diǎn)A、C在反比例函數(shù)y= (k≠0)圖象上,點(diǎn)B、D在x軸上,且B、D兩點(diǎn)關(guān)于原點(diǎn)對(duì)稱,可以求得k的值和點(diǎn)C的坐標(biāo);(2)根據(jù)△APO的面積為2,可以求得OP的長(zhǎng),從而可以求得點(diǎn)P的坐標(biāo),進(jìn)而可以求得直線AP的解析式,從而可以求得點(diǎn)D的坐標(biāo),再根據(jù)等積法可以求得點(diǎn)D到直線AC的距離.本題考查反比例函數(shù)與一次函數(shù)的交點(diǎn)問題、平行四邊形的性質(zhì),解題的關(guān)鍵是明確題意,找出所求問題需要的條件,利用數(shù)形結(jié)合的思想解答問題.
【考點(diǎn)精析】認(rèn)真審題,首先需要了解平行四邊形的性質(zhì)(平行四邊形的對(duì)邊相等且平行;平行四邊形的對(duì)角相等,鄰角互補(bǔ);平行四邊形的對(duì)角線互相平分).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,是由兩個(gè)正方形組成的長(zhǎng)方形花壇ABCD,小明從頂點(diǎn)A沿著花壇間小路直到走到長(zhǎng)邊中點(diǎn)O,再?gòu)闹悬c(diǎn)O走到正方形OCDF的中心,再?gòu)闹行?/span>走到正方形GFH的中點(diǎn),又從中心走到正方形IHJ的中心,再?gòu)闹行?/span>走到正方形KJP的中心,一共走了m,則長(zhǎng)方形花壇ABCD的周長(zhǎng)是(

A. 36m B. 48m C. 96m D. 60m

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,∠ABC=90°,∠BAC=60°,△ACD是等邊三角形,E是AC的中點(diǎn),連接BE并延長(zhǎng),交DC于點(diǎn)F,求證:

(1)△ABE≌△CFE;
(2)四邊形ABFD是平行四邊形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,正方形ABCD的面積為12,△ABE是等邊三角形,點(diǎn)E在正方形內(nèi),在對(duì)角線AC上找到一點(diǎn)P,使PD+PE的和最小,則這個(gè)和的最小值是(  。

A. B. C. 3 D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知點(diǎn)P是△ABC內(nèi)一點(diǎn),且它到三角形的三個(gè)頂點(diǎn)距離之和最小,則P點(diǎn)叫△ABC的費(fèi)馬點(diǎn)(Fermat point).已經(jīng)證明:在三個(gè)內(nèi)角均小于120°的△ABC中,當(dāng)∠APB=∠APC=∠BPC=120°時(shí),P就是△ABC的費(fèi)馬點(diǎn).若點(diǎn)P是腰長(zhǎng)為 的等腰直角三角形DEF的費(fèi)馬點(diǎn),則PD+PE+PF=

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,矩形ABCD中,AB=4,BC=3,連接AC,⊙P和⊙Q分別是△ABC和△ADC的內(nèi)切圓,則PQ的長(zhǎng)是(

A.
B.
C.
D.2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】2016年5月9日﹣11日,貴州省第十一屆旅游產(chǎn)業(yè)發(fā)展大會(huì)在準(zhǔn)一市茅臺(tái)鎮(zhèn)舉行,大會(huì)推出五條遵義精品旅游線路:A紅色經(jīng)典,B醉美丹霞,C生態(tài)茶海,D民族風(fēng)情,E避暑休閑.某校攝影小社團(tuán)在“祖國(guó)好、家鄉(xiāng)美”主題宣傳周里,隨機(jī)抽取部分學(xué)生舉行“最愛旅游路線”投票活動(dòng),參與者每人選出一條心中最愛的旅游路線,社團(tuán)對(duì)投票進(jìn)行了統(tǒng)計(jì),并繪制出如下不完整的條形統(tǒng)計(jì)圖和扇形統(tǒng)計(jì)圖,請(qǐng)解決下列問題.

(1)本次參與投票的總?cè)藬?shù)是人.
(2)請(qǐng)補(bǔ)全條形統(tǒng)計(jì)圖.
(3)扇形統(tǒng)計(jì)圖中,線路D部分的圓心角是度.
(4)全校2400名學(xué)生中,請(qǐng)你估計(jì),選擇“生態(tài)茶!甭肪的人數(shù)約為多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,正方形ABCD中,AB=6,點(diǎn)E在邊CD上,且CE=2DE.將△ADE沿AE對(duì)折至△AFE,延長(zhǎng)EF交邊BC于點(diǎn)G,連結(jié)AG、CF.下列結(jié)論:①△ABG≌△AFG;②BG=GC;③EG=DE+BG;④AG∥CF;⑤SFGC=3.6.其中正確結(jié)論的個(gè)數(shù)是(

A.2
B.3
C.4
D.5

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為解決都勻市停車難的問題,計(jì)劃在一段長(zhǎng)為56米的路段規(guī)劃處如圖所示的停車位,已知每個(gè)車位是長(zhǎng)為5米,寬為2米的矩形,且矩形的寬與路的邊緣成45°角,則該路段最多可以劃出個(gè)這樣的停車位.(取 =1.4,結(jié)果保留整數(shù))

查看答案和解析>>

同步練習(xí)冊(cè)答案