【題目】如圖,已知銳角△ABC中,AB、AC邊的中垂線交于點(diǎn)O
(1)若∠A=α(0°<α<90°),求∠BOC;
(2)試判斷∠ABO+∠ACB是否為定值;若是,求出定值,若不是,請說明理由.
【答案】
(1)解:AB、AC邊的中垂線交于點(diǎn)O,
∴AO=BO=CO,
∴∠OAB=∠OBA,∠OCA=∠OAC,
∴∠AOB+∠AOC=(180°﹣∠OAB﹣∠OBA)+(180°﹣∠OAC﹣∠OCA),
∴∠AOB+∠AOC=(180°﹣2∠OAB)+(180°﹣2∠OAC)=360°﹣2(∠OAB+∠OAC)=360°﹣2∠A=360°﹣2α,
∴∠BOC=360°﹣(∠AOB+∠AOC)=2α
(2)解:∠ABO+∠ACB為定值,
∵BO=CO,
∴∠OBC=∠OCB,
∵∠OAB=∠OBA,∠OCA=∠OAC,
∴∠OBC= (180°﹣2∠A)=90°﹣α,
∵∠ABO+∠ACB+∠OBC+∠A=180°,
∴∠ABO+∠ACB=180°﹣α﹣(90°﹣α)=90°
【解析】(1)根據(jù)線段垂直平分線的性質(zhì)得到AO=BO=CO,根據(jù)等腰三角形的性質(zhì)得到∠OAB=∠OBA,∠OCA=∠OAC,根據(jù)周角定義即可得到結(jié)論;(2)根據(jù)等腰三角形的性質(zhì)得到∠OBC=∠OCB,于是得到∠OBC=90°﹣α,根據(jù)三角形的內(nèi)角和即可得到結(jié)論.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】假如某市的出租車是這樣收費(fèi)的:起步價(jià)所包含的路程為0~1.5千米,超過1.5千米的部分按每千米另收費(fèi). 小劉說:“我乘出租車從市政府到婁底汽車站走了4.5千米,付車費(fèi)10.5元.”
小李說:“我乘出租車從市政府到婁底汽車站走了6.5千米,付車費(fèi)14.5元.”
問:
(1)出租車的起步價(jià)是多少元?超過1.5千米后每千米收費(fèi)多少元?
(2)小張乘坐出租車從汽車站到市政府走了10千米,應(yīng)付車費(fèi)多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列各組數(shù),可以作為直角三角形的三邊長的是( 。
A. 7,24,25 B. 5,13,15 C. 2,3,4 D. 8,12,20
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,AC=BC,∠ACB=90°,點(diǎn)D為AC的中點(diǎn).
(1)如圖1,E為線段DC上任意一點(diǎn),將線段DE繞點(diǎn)D逆時(shí)針旋轉(zhuǎn)90°得到線段DF,連接CF,過點(diǎn)F作FH⊥FC,交直線AB于點(diǎn)H.判斷FH與FC的數(shù)量關(guān)系并加以證明;
(2)如圖2,若E為線段DC的延長線上任意一點(diǎn),(1)中的其他條件不變,你在(1)中得出的結(jié)論是否發(fā)生改變,直接寫出你的結(jié)論,不必證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC中,AB=AC,∠BAC=90°,
(1)CD平分∠ACB,BE⊥CD,垂足E在CD的延長線上,BE的延長線交CA的延長線于M,補(bǔ)全圖形,并探究BE和CD的數(shù)量關(guān)系,并說明理由;
(2)若BC上有一動(dòng)點(diǎn)P,且∠BPQ= ∠ACB,BQ⊥PQ于Q,PQ交AB于F,試探究BQ和PF之間的數(shù)量關(guān)系,并證明你的結(jié)論.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知反比例函數(shù)的圖象與一次函數(shù)的圖象交于點(diǎn)A(1,4)和點(diǎn)B(m,).
(1)求這兩個(gè)函數(shù)的表達(dá)式;
(2)觀察圖象,當(dāng)>0時(shí),直接寫出時(shí)自變量x的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】附加題:如圖,已知在△ABC中,AB=AC=10cm,BC=8cm,點(diǎn)D為AB的中點(diǎn),點(diǎn)P在線段BC上由B點(diǎn)向C點(diǎn)運(yùn)動(dòng),同時(shí),點(diǎn)Q在線段CA上由點(diǎn)C向點(diǎn)A運(yùn)動(dòng).
(1)如果點(diǎn)P、Q的速度均為3厘米/秒,經(jīng)過1秒后,△BPD與△CQP是否全等?請說明理由;
(2)若點(diǎn)P的運(yùn)動(dòng)速度為2厘米/秒,點(diǎn)Q的運(yùn)動(dòng)速度為2.5厘米/秒,是否存在某一個(gè)時(shí)刻,使得△BPD與△CQP全等?如果存在請求出這一時(shí)刻并證明;如果不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com