【題目】若一個(gè)角的3倍比這個(gè)角補(bǔ)角的2倍還少2°,則這個(gè)角等于

【答案】71.6°
【解析】解:設(shè)這個(gè)角為x, 由題意得,3x=2(180°﹣x)﹣2°,
解得,x=71.6°
故答案為:71.6°.
設(shè)這個(gè)角為x,根據(jù)題意和補(bǔ)角的概念列出方程,解方程即可.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,若點(diǎn)P在第四象限,且點(diǎn)Px軸的距離為1,到y軸的距離為3,則點(diǎn)的坐標(biāo)為( )

A. (3,-1)B. (-3,1)C. (1,-3)D. (-1,3)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知在△ABC中,BC=AC,以BC為直徑的⊙O與邊AB相交于點(diǎn)D,DE⊥AC,垂足為點(diǎn)E.

(1)求證:點(diǎn)D是AB的中點(diǎn);

(2)判斷DE與⊙O的位置關(guān)系,并證明你的結(jié)論;

(3)若⊙O的直徑為18,cosB=,求DE的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖BD是正方形ABCD的對(duì)角線,BC2,BC在其所在的直線上平移將通過平移得到的線段記為PQ,連結(jié)PA,QD,并過點(diǎn)QQOBD,垂足為O連結(jié)OA,OP.

(1)請(qǐng)直接寫出線段BC在平移過程中,四邊形APQD是什么四邊形?

(2)請(qǐng)判斷OA,OP之間的數(shù)量關(guān)系和位置關(guān)系并加以證明.

(3)在平移變換過程中,設(shè)ySOPBBPx(0x2),yx之間的函數(shù)表達(dá)式并求出y的最大值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列條件中,不能判斷四邊形ABCD是平行四邊形的是(
A.∠A=∠C,∠B=∠D
B.AB∥CD,AB=CD
C.AB=CD,AD∥BC
D.AB∥CD,AD∥BC

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在矩形OABC中,OA=3,OC=2,F(xiàn)是AB上的一個(gè)動(dòng)點(diǎn)(F不與A,B重合),過點(diǎn)F的反比例函數(shù)y= (x>0)的圖象與BC邊交于點(diǎn)E.

(1)當(dāng)F為AB的中點(diǎn)時(shí),求該函數(shù)的解析式;

(2)當(dāng)k為何值時(shí),△EFA的面積最大,最大面積是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB為⊙O的直徑,AB=AC,BC交⊙O于點(diǎn)D, AC交⊙O于點(diǎn)E,∠BAC=45°。

(1)求∠EBC的度數(shù);

(2)求證:BD=CD。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在正方形ABCD中,E是BC的中點(diǎn),F(xiàn)是CD上一點(diǎn),且CF= CD,求證:∠AEF=90°.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為建設(shè)資源節(jié)約型、環(huán)境友好型社會(huì),克服因干旱而造成的電力緊張困難,切實(shí)做好節(jié)能減排工作.某地決定對(duì)居民家庭用電實(shí)行“階梯電價(jià)”,電力公司規(guī)定:居民家庭每月用電量在80千瓦時(shí)以下(80千瓦時(shí),1千瓦時(shí)俗稱1)時(shí),實(shí)行“基本電價(jià)”;當(dāng)居民家庭月用電量超過80千瓦時(shí)時(shí),超過部分實(shí)行“提高電價(jià)”.

(1)小張家今年2月份用電100千瓦時(shí),上繳電費(fèi)68元;5月份用電120千瓦時(shí),上繳電費(fèi)88元.求“基本電價(jià)”和“提高電價(jià)”分別為多少元/千瓦時(shí);

(2)6月份小張家預(yù)計(jì)用電130千瓦時(shí),請(qǐng)預(yù)算小張家6月份應(yīng)上繳的電費(fèi).

查看答案和解析>>

同步練習(xí)冊(cè)答案