【題目】在平面直角坐標(biāo)系中,△ABC的三個(gè)頂點(diǎn)的位置如圖所示,點(diǎn)A'的坐標(biāo)是(-2,2),現(xiàn)將△ABC平移,使點(diǎn)A變換為點(diǎn)A',點(diǎn)B'、C'分別是B、C的對應(yīng)點(diǎn).
(1)直接寫出點(diǎn)B'、C'的坐標(biāo):B' ,C' ;并在坐標(biāo)系中畫出平移后的△A'B'C'(不寫畫法);
(2)若△ABC內(nèi)部一點(diǎn)P的坐標(biāo)為(a,b),則點(diǎn)P的對應(yīng)點(diǎn)P的坐標(biāo)是 ;
(3)若△ABC繞點(diǎn)C逆時(shí)針旋轉(zhuǎn)90°至△A1B1C,畫出△A1B1C.
(4)求△A'B'C'的面積是多少?
【答案】(1)B'(-4,1)C'(-1,-1),見解析;(2)(a-5,b-2);(3)見解析;(4)3.5
【解析】
(1)根據(jù)平面直角坐標(biāo)系寫出點(diǎn)B′、C′的坐標(biāo)即可;根據(jù)網(wǎng)格結(jié)構(gòu)找出點(diǎn)B′、C′的位置,然后順次連接即可;
(2)根據(jù)平移規(guī)律寫出即可;
(3)根據(jù)旋轉(zhuǎn)的性質(zhì),即可畫出旋轉(zhuǎn)后的圖形;
(4)根據(jù)三角形面積等于正方形面積減去三個(gè)小三角形面積解答即可.
解:(1)根據(jù)平移的規(guī)則,得:B′(-4,1)、C′(-1,-1);△A′B′C′如圖所示;
(2)∵點(diǎn)A(3,4)、A′(-2,2),
∴平移規(guī)律為向左平移5個(gè)單位,向下平移2個(gè)單位,
∴P(a,b)平移后的對應(yīng)點(diǎn)P′的坐標(biāo)是:(a-5,b-2).
故答案為:(-4,1);(-1,-1);(a-5,b-2).
(3)∵△ABC繞點(diǎn)C逆時(shí)針旋轉(zhuǎn)90°至△A1B1C,則上圖所示;
(4)△A′B′C′的面積=3×3×2×1×3×1×2×3=3.5;
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】四邊形ABCD中,∠BAD=130°,∠B=∠D=90°,在BC、CD上分別找一點(diǎn)M、N,使三角形AMN周長最小時(shí),則∠AMN+∠ANM的度數(shù)為( 。
A. 80° B. 90° C. 100° D. 130°
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】我市某蔬菜生產(chǎn)基地在氣溫較低時(shí),用裝有恒溫系統(tǒng)的大棚栽培一種在自然光照且溫度為18℃的條件下生長最快的新品種.圖是某天恒溫系統(tǒng)從開啟到關(guān)閉及關(guān)閉后,大棚內(nèi)溫度y(℃)隨時(shí)間x(小時(shí))變化的函數(shù)圖象,其中BC段是雙曲線的一部分.請根據(jù)圖中信息解答下列問題:
(1)恒溫系統(tǒng)在這天保持大棚內(nèi)溫度18℃的時(shí)間有多少小時(shí)?
(2)求k的值;
(3)當(dāng)x=16時(shí),大棚內(nèi)的溫度約為多少度?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】隨著車輛的增加,交通違規(guī)的現(xiàn)象越來越嚴(yán)重,交警對某雷達(dá)測速區(qū)檢測到的一組汽車的時(shí)速數(shù)據(jù)進(jìn)行整理,得到其頻數(shù)及頻率如表(未完成):
數(shù)據(jù)段 | 頻數(shù) | 頻率 |
30~40 | 10 | 0.05 |
40~50 | 36 | |
50~60 | 0.39 | |
60~70 | ||
70~80 | 20 | 0.10 |
總計(jì) | 200 | 1 |
注:30~40為時(shí)速大于等于30千米而小于40千米,其他類同
(1)請你把表中的數(shù)據(jù)填寫完整;
(2)補(bǔ)全頻數(shù)分布直方圖;
(3)如果汽車時(shí)速不低于60千米即為違章,則違章車輛共有多少輛?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】本學(xué)期學(xué)習(xí)了分式方程的解法,下面是晶晶同學(xué)的解題過程:
解方程
解:整理,得: …………………………第①步
去分母,得: …………………………第②步
移項(xiàng),得: ……………………… 第③步
合并同類項(xiàng),得: ……………………… 第④步
系數(shù)化1,得: …………………………第⑤步
檢驗(yàn):當(dāng)時(shí),
所以原方程的解是. ………………………第⑥步
上述晶晶的解題過程從第_____步開始出現(xiàn)錯(cuò)誤,錯(cuò)誤的原因是_________________.請你幫晶晶改正錯(cuò)誤,寫出完整的解題過程.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】□ABCD中,E、F是對角線BD上不同的兩點(diǎn),下列條件中,不能得出四邊形AECF一定為平行四邊形的是( )
A. BE=DF B. AE=CF C. AF//CE D. ∠BAE=∠DCF
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】按要求作答
(1)不用畫圖,請直接寫出三角形ABC關(guān)于 x軸對稱的圖形三角形A1B1C1的三個(gè)頂點(diǎn)的坐標(biāo)A1 B1 C1
(2)請畫出三角形ABC關(guān)于y軸對稱的三角形A’B’C’(其中 A’、B’、C’別是A、 B 、C 的對應(yīng)點(diǎn),不寫作法)
(3)求三角形ABC的面積
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)計(jì)算:
(2)如圖,在矩形 ABCD 中,AE 平分∠BAD,交 BC 于點(diǎn) E,過點(diǎn) E 作 EF⊥AD 于點(diǎn) F,求證:四邊形ABEF 是正方形.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com