【題目】在平面直角坐標(biāo)系中,拋物線與軸的兩個(gè)交點(diǎn)分別是、,為頂點(diǎn).
(1)求、的值和頂點(diǎn)的坐標(biāo);
(2)在軸上是否存在點(diǎn),使得是以為斜邊的直角三角形?若存在,求出點(diǎn)的坐標(biāo);若不存在,請(qǐng)說明理由.
【答案】(1),,(-1,4);(2)在y軸上存在點(diǎn)D (0,3)或D (0,1),使△ACD是以AC為斜邊的直角三角形
【解析】
(1)把A(-3,0),B(1,0)代入解方程組即可得到結(jié)論;
(2)過C作CE⊥y軸于E,根據(jù)函數(shù)的解析式求得C(-1,4),得到CE=1,OE=4,設(shè),得到,根據(jù)相似三角形的性質(zhì)即可得到結(jié)論.
(1)把A(3,0)、B(1,0)分別代入,
,
解得:,,
則該拋物線的解析式為:,
∵,
所以頂點(diǎn)的坐標(biāo)為(,);
故答案為:,,頂點(diǎn)的坐標(biāo)為(,);
(2)如圖1,過點(diǎn)作⊥軸于點(diǎn),
假設(shè)在軸上存在滿足條件的點(diǎn),
設(shè)(0,),則,
∵,
∴,,,,
由∠90得∠1∠290,
又∵∠2∠390,
∴∠3∠1,
又∵∠CED∠DOA90,
∴△∽△,
∴,
則,
變形得,
解得,.
綜合上述:在y軸上存在點(diǎn)(0,3)或(0,1),使△ACD是以AC為斜邊的直角三角形.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,平面直角坐標(biāo)系xOy中,A(2,1),B(3,﹣1),C(﹣2,1),D(0,2).已知線段AB繞著點(diǎn)P逆時(shí)針旋轉(zhuǎn)得到線段CD,其中C是點(diǎn)A的對(duì)應(yīng)點(diǎn).
(1)用尺規(guī)作圖的方法確定旋轉(zhuǎn)中心P,并直接寫出點(diǎn)P的坐標(biāo);(要求保留作圖痕跡,不寫作法)
(2)若以P為圓心的圓與直線CD相切,求⊙P的半徑
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知矩形ABCD和矩形EFGO在平面直角坐標(biāo)系中,點(diǎn)B,F的坐標(biāo)分別為(-4,4),(2,1).若矩形ABCD和矩形EFGO是位似圖形,點(diǎn)P(點(diǎn)P在GC上)是位似中心,則點(diǎn)P的坐標(biāo)為( )
A. (0,3)
B. (0,2.5)
C. (0,2)
D. (0,1.5)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,為坐標(biāo)原點(diǎn),的邊垂直于軸,垂足為點(diǎn),反比例函數(shù)的圖象經(jīng)過的中點(diǎn),且與相交于點(diǎn).
(1)求反比例函數(shù)的解析式;
(2)求的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,是一張盾構(gòu)隧道斷面結(jié)構(gòu)圖.隧道內(nèi)部為以O為圓心,AB為直徑的圓.隧道內(nèi)部共分為三層,上層為排煙道,中間為行車隧道,下層為服務(wù)層.點(diǎn)A到頂棚的距離為1.6m,頂棚到路面的距離是6.4m,點(diǎn)B到路面的距離為4.0m.請(qǐng)求出路面CD的寬度.(精確到0.1m)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為加快城鄉(xiāng)對(duì)接,建設(shè)美麗鄉(xiāng)村,某地區(qū)對(duì)A、B兩地間的公路進(jìn)行改建,如圖,A,B兩地之間有一座山.汽車原來從A地到B地需途經(jīng)C地沿折線ACB行駛,現(xiàn)開通隧道后,汽車可直接沿直線AB行駛,已知BC=80千米,∠A=45°,∠B=30°.
(1)開通隧道前,汽車從A地到B地要走多少千米?
(2)開通隧道后,汽車從A地到B地可以少走多少千米?(結(jié)果保留根號(hào))
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,直線l的函數(shù)表達(dá)式為y=x,點(diǎn)O1的坐標(biāo)為(1,0),以O1為圓心,O1O為半徑畫圓,交直線l于點(diǎn)P1,交x軸正半軸于點(diǎn)O2,以O2為圓心,O2O為半徑畫圓,交直線l于點(diǎn)P2,交x軸正半軸于點(diǎn)O3,以O3為圓心,O3O為半徑畫圓,交直線l于點(diǎn)P3,交x軸正半軸于點(diǎn)O4;…按此做法進(jìn)行下去,其中的長為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知點(diǎn)B(0,2),A(﹣6,﹣1)在反比例函數(shù)的圖象上,作射線AB,再將射線AB繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)45°后,交反比例函數(shù)圖象于點(diǎn)C,則點(diǎn)C的坐標(biāo)為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB是⊙O的直徑,C是弧AB的中點(diǎn),弦CD與AB相交于E.
(1)若∠AOD=45°,求證:CE=ED;(2)若AE=EO,求tan∠AOD的值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com