【題目】主題班會(huì)上,王老師出示了如圖所示的一幅漫畫(huà),經(jīng)過(guò)同學(xué)們的一番熱議,達(dá)成以下四個(gè)觀點(diǎn):

A.放下自我,彼此尊重; B.放下利益,彼此平衡;

C.放下性格,彼此成就; D.合理競(jìng)爭(zhēng),合作雙贏.

要求每人選取其中一個(gè)觀點(diǎn)寫(xiě)出自己的感悟.根據(jù)同學(xué)們的選擇情況,小明繪制了下面兩幅不完整的圖表,請(qǐng)根據(jù)圖表中提供的信息,解答下列問(wèn)題:

 觀點(diǎn)

頻數(shù) 

頻率 

 A

 a

 0.2

 B

 12

 0.24

 C

 8

 b

 D

 20

 0.4

(1)參加本次討論的學(xué)生共有   人;表中a   ,b   ;

(2)在扇形統(tǒng)計(jì)圖中,求D所在扇形的圓心角的度數(shù);

(3)現(xiàn)準(zhǔn)備從A,B,C,D四個(gè)觀點(diǎn)中任選兩個(gè)作為演講主題,請(qǐng)用列表或畫(huà)樹(shù)狀圖的方法求選中觀點(diǎn)D(合理競(jìng)爭(zhēng),合作雙贏)的概率.

【答案】(1)50、10、0.16;(2)144°;(3).

【解析】

(1)由B觀點(diǎn)的人數(shù)和所占的頻率即可求出總?cè)藬?shù);由總?cè)藬?shù)即可求出a、b的值,

(2)用360°乘以D觀點(diǎn)的頻率即可得;

(3)畫(huà)出樹(shù)狀圖,然后根據(jù)概率公式列式計(jì)算即可得解

(1)參加本次討論的學(xué)生共有12÷0.24=50,

a=50×0.2=10,b=8÷50=0.16,

故答案為:50、10、0.16;

(2)D所在扇形的圓心角的度數(shù)為360°×0.4=144°;

(3)根據(jù)題意畫(huà)出樹(shù)狀圖如下:

由樹(shù)形圖可知:共有12中可能情況,選中觀點(diǎn)D(合理競(jìng)爭(zhēng),合作雙贏)的概率有6種,

所以選中觀點(diǎn)D(合理競(jìng)爭(zhēng),合作雙贏)的概率為

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,等邊三角形ABC的邊長(zhǎng)為4,ADBC邊上的中線FAD邊上的動(dòng)點(diǎn),EAC邊上一點(diǎn)AE2,當(dāng)EFCF取得最小值時(shí)∠ECF的度數(shù)為( )

A. 20° B. 25° C. 30° D. 45°

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】中國(guó)北京已獲得2022年第24屆冬季奧林匹克運(yùn)動(dòng)會(huì)舉辦權(quán),北京也將創(chuàng)造歷史,成為第一個(gè)既舉辦過(guò)夏奧會(huì)又舉辦冬奧會(huì)的城市.張家口也成為本屆冬奧會(huì)的協(xié)辦城市,為此,中國(guó)設(shè)計(jì)了第一條采用我國(guó)自主研發(fā)的北斗衛(wèi)星導(dǎo)航系統(tǒng)的智能化高速鐵路——京張高鐵,作為2022年北京冬奧會(huì)重要交通保障設(shè)施.已知北京至張家口鐵路,鐵路全長(zhǎng)約180千米.按照設(shè)計(jì),京張高鐵列車(chē)的平均行駛速度是普通快車(chē)的1.5倍,用時(shí)比普通快車(chē)用時(shí)少了20分鐘,求高鐵列車(chē)的平均行駛速度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列說(shuō)法:①三點(diǎn)確定一個(gè)圓;②平分弦的直徑必垂直于這條弦;③圓周角等于圓心角的一半;④等弧所對(duì)的圓心角相等;⑤各角相等的圓內(nèi)接多邊形是正多邊形.其中正確的有( )

A. 個(gè) B. 個(gè) C. 個(gè) D. 個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】定義:一個(gè)自然數(shù),右邊的數(shù)字總比左邊的數(shù)字小,我們稱(chēng)它為下滑數(shù)(如:32,641,8531等).現(xiàn)從兩位數(shù)中任取一個(gè),恰好是下滑數(shù)的概率為( 。

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知∠BAC的平分線與BC的垂直平分線DG相交于點(diǎn)D,DEABDFAC,垂足分別為E、F,

1)連接CDBD,求證:CDF≌△BDE;

2)若AE5,AC3,求BE的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】1)如圖1,在正方形ABCD中,MBC邊(不含端點(diǎn)B、C)上任意一點(diǎn),PBC延長(zhǎng)線上一點(diǎn),N的平分線上一點(diǎn),若,求證:為等腰三角形.下面給出此問(wèn)題一種證明的思路,你可以按這一思路繼續(xù)完成證明,也可以選擇另外的方法證明此結(jié)論.證明:在AB邊上截取AE=MC,連接ME,在正方形ABCD中,AB=BC,(下面請(qǐng)你連接AN,完成余下的證明過(guò)程)

2)若將(1)中的正方形ABCD”改為正三角形ABC”(如圖2,N的平分線上一點(diǎn),則當(dāng)時(shí),試探究是何種特殊三角形,并證明探究結(jié)論.

3)若將(1)中的正方形ABCD”改為邊形,試猜想:當(dāng)的大小為多少時(shí),(1)中的結(jié)論仍然成立?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,△ABC的位置如圖所示.

(1)分別寫(xiě)出下列頂點(diǎn)的坐標(biāo):A_______B______.

(2)頂點(diǎn)A關(guān)于y軸對(duì)稱(chēng)的點(diǎn)A′的坐標(biāo)為:A′_______.

(3)ABC的面積為_______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,B、A、F三點(diǎn)在同一直線上,(1)AD∥BC,(2)∠B=∠C,(3)AD平分∠EAC.

請(qǐng)你用其中兩個(gè)作為條件,另一個(gè)作為結(jié)論,構(gòu)造一個(gè)真命題,并證明.

己知:______________________________________________________.

求證:______________________________________________________.

證明:

查看答案和解析>>

同步練習(xí)冊(cè)答案