己知:如圖1,拋物線y=ax2-2ax+c(a≠0)與y軸交于點(diǎn)C(O,-4),與x軸交于A、B兩點(diǎn),點(diǎn)A的坐標(biāo)為(4,0).
(1)求該拋物線的函數(shù)解析式;
(2)點(diǎn)P(t,O)是線段AB上一動(dòng)點(diǎn)(不與A、B重合),過(guò)P點(diǎn)作PEAC,交BC于E,連接CP,求△CPE的面積S與t的函數(shù)關(guān)系式,并指出t的取值范圍;
(3)如圖2,若平行于x軸的動(dòng)直線r與該拋物線交于點(diǎn)Q,與直線AC交于F,點(diǎn)D的坐標(biāo)為(2,0).問(wèn)是否存在這樣的直線r,使得△0DF為等腰三角形?若存在,請(qǐng)求出點(diǎn)Q坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
(1)由題意得
16a-8a+c=0
c=-4

解得
a=0.5
c=-4

∴該拋物線的函數(shù)解析式為y=0.5x2-x-4;

(2)過(guò)點(diǎn)E作EG⊥x軸于G,
由0.5x2-x-4=0,
得x1=-2,x2=4.
AB=6,BP=2+t,
證△BPE△BAC,可得EG=
2
3
(t+2),
S=S△CPB-S△BPE=
1
2
BP•CO-
1
2
BP•EG=
1
2
(t+2)(4-
2
3
(t+2))=-
1
3
t2+
2
3
t+
8
3

-2<t<4.

(3)這樣的Q點(diǎn)存在,使得△ODF為等腰三角形.
①當(dāng)OF=DF時(shí),Q(x.-3)
0.5x2-x-4=-3,x=1±
3

Q1(1+
3
,-3)
,Q2(1-
3
,-3)

②當(dāng)OD=DF=2時(shí),Q(x,-2)
0.5x2-x-4=-2,x=1±
5

Q3(1+
5
,-2)
Q4(1-
5
,-2)
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

如圖,兩條拋物線y1=-
1
2
x2+1,y2=-
1
2
x2-1
與分別經(jīng)過(guò)點(diǎn)(-2,0),(2,0)且平行于y軸的兩條平行線圍成的陰影部分的面積為(  )
A.8B.6C.10D.4

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

在直角坐標(biāo)平面中,O為坐標(biāo)原點(diǎn),二次函數(shù)y=x2+bx+c的圖象與y軸的負(fù)半軸相交于點(diǎn)C(如圖),點(diǎn)C的坐標(biāo)為(0,-3),且BO=CO.
(1)求出B點(diǎn)坐標(biāo)和這個(gè)二次函數(shù)的解析式;
(2)求△ABC的面積;
(3)若P是拋物線對(duì)稱軸上一個(gè)動(dòng)點(diǎn),求當(dāng)PA+PC的值最小時(shí)P點(diǎn)坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知拋物線y=ax2-x+c經(jīng)過(guò)點(diǎn)Q(-2,
3
2
),且它的頂點(diǎn)P的橫坐標(biāo)為-1.設(shè)拋物線與x軸相交于A、B兩點(diǎn),如圖.
(1)求拋物線的解析式;
(2)求A、B兩點(diǎn)的坐標(biāo);
(3)設(shè)PB于y軸交于C點(diǎn),求△ABC的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

圖1是邊長(zhǎng)分別為4
3
和3的兩個(gè)等邊三角形紙片ABC和C′D′E′疊放在一起(C與C′重合).
(1)操作:固定△ABC,將△C′D′E′繞點(diǎn)C順時(shí)針旋轉(zhuǎn)30°得到△CDE,連接AD、BE,CE的延長(zhǎng)線交AB于F(圖2);
探究:在圖2中,線段BE與AD之間有怎樣的大小關(guān)系?試證明你的結(jié)論.
(2)操作:將圖2中的△CDE,在線段CF上沿著CF方向以每秒1個(gè)單位的速度平移,平移后的△CDE設(shè)為△PQR(圖3);
探究:設(shè)△PQR移動(dòng)的時(shí)間為x秒,△PQR與△ABC重疊部分的面積為y,求y與x之間的函數(shù)解析式,并寫出函數(shù)自變量x的取值范圍.
(3)操作:圖1中△C′D′E′固定,將△ABC移動(dòng),使頂點(diǎn)C落在C′E′的中點(diǎn),邊BC交D′E′于點(diǎn)M,邊AC交D′C′于點(diǎn)N,設(shè)∠ACC′=α(30°<α<90°(圖4);
探究:在圖4中,線段C′N•E′M的值是否隨α的變化而變化?如果沒(méi)有變化,請(qǐng)你求出C′N•E′M的值,如果有變化,請(qǐng)你說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

在“母親節(jié)”期間,某校部分團(tuán)員參加社會(huì)公益活動(dòng),準(zhǔn)備購(gòu)進(jìn)一批許愿瓶進(jìn)行銷售,并將所得利潤(rùn)捐給慈善機(jī)構(gòu).根據(jù)市場(chǎng)調(diào)查,這種許愿瓶一段時(shí)間內(nèi)的銷售量y(個(gè))與銷售單價(jià)x(元/個(gè))之間的對(duì)應(yīng)關(guān)系如圖所示:
(1)試判斷y與x之間的函數(shù)關(guān)系,并求出函數(shù)關(guān)系式;
(2)若許愿瓶的進(jìn)價(jià)為6元/個(gè),按照上述市場(chǎng)調(diào)查的銷售規(guī)律,求銷售利潤(rùn)w(元)與銷售單價(jià)x(元/個(gè))之間的函數(shù)關(guān)系式;
(3)在(2)的條件下,若許愿瓶的進(jìn)貨成本不超過(guò)900元,要想獲得最大利潤(rùn),試確定這種許愿瓶的銷售單價(jià),并求出此時(shí)的最大利潤(rùn).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

如圖,矩形ABCD的長(zhǎng)AB=4cm,寬AD=2cm.O是AB的中點(diǎn),OP⊥AB,兩半圓的直徑分別為AO與OB.拋物線的頂點(diǎn)是O,關(guān)于OP對(duì)稱且經(jīng)過(guò)C、D兩點(diǎn),則圖中陰影部分的面積是______cm2

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

如圖,已知二次函數(shù)y=ax2+bx+c的圖象經(jīng)過(guò)點(diǎn)(-1,0),(2,0),當(dāng)y隨x的增大而減小時(shí),x的取值范圍是______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知關(guān)于x的方程x2-(2m-3)x+m-4=O的二根為a1、a2,且滿足-3<a1<-2,a2>0.求m的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案