【題目】如圖,在△ABC中,AB=AC=5,BC=8,D是線段BC上的動點(不含端點B、C).若線段AD長為正整數(shù),則點D的個數(shù)共有( 。
A.5個
B.4個
C.3個
D.2個
【答案】C
【解析】解:過A作AE⊥BC,
∵AB=AC,
∴EC=BE= BC=4,
∴AE= =3,
∵D是線段BC上的動點(不含端點B、C).
∴3≤AD<5,
∴AD=3或4,
∵線段AD長為正整數(shù),
∴點D的個數(shù)共有3個,
故選:C.
首先過A作AE⊥BC,當(dāng)D與E重合時,AD最短,首先利用等腰三角形的性質(zhì)可得BE=EC,進(jìn)而可得BE的長,利用勾股定理計算出AE長,然后可得AD的取值范圍,進(jìn)而可得答案.此題主要考查了等腰三角形的性質(zhì)和勾股定理,關(guān)鍵是正確利用勾股定理計算出AD的最小值,然后求出AD的取值范圍.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某商店購進(jìn)甲乙兩種商品,甲的進(jìn)貨單價比乙的進(jìn)貨單價高20元,已知20個甲商品的進(jìn)貨總價與25個乙商品的進(jìn)貨總價相同.
(1)求甲、乙每個商品的進(jìn)貨單價;
(2)若甲、乙兩種商品共進(jìn)貨100件,要求兩種商品的進(jìn)貨總價不高于9000元,同時甲商品按進(jìn)價提高10%后的價格銷售,乙商品按進(jìn)價提高25%后的價格銷售,兩種商品全部售完后的銷售總額不低于10480元,問有哪幾種進(jìn)貨方案?
(3)在條件(2)下,并且不再考慮其他因素,若甲乙兩種商品全部售完,哪種方案利潤最大?最大利潤是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀:我們約定,在平面直角坐標(biāo)系中,經(jīng)過某點且平行于坐標(biāo)軸或平行于兩坐標(biāo)軸夾角平分線的直線,叫該點的“特征線”.例如,點M(1,3)的特征線有:x=1,y=3,y=x+2,y=﹣x+4.
問題與探究:如圖,在平面直角坐標(biāo)系中有正方形OABC,點B在第一象限,A、C分別在x軸和y軸上,拋物線 經(jīng)過B、C兩點,頂點D在正方形內(nèi)部.
(1)直接寫出點D(m,n)所有的特征線;
(2)若點D有一條特征線是y=x+1,求此拋物線的解析式;
(3)點P是AB邊上除點A外的任意一點,連接OP,將△OAP沿著OP折疊,點A落在點A′的位置,當(dāng)點A′在平行于坐標(biāo)軸的D點的特征線上時,滿足(2)中條件的拋物線向下平移多少距離,其頂點落在OP上?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】環(huán)保局對某企業(yè)排污情況進(jìn)行檢測,結(jié)果顯示:所排污水中硫化物的濃度超標(biāo),即硫化物的濃度超過最高允許的1.0mg/L.環(huán)保局要求該企業(yè)立即整改,在15天以內(nèi)(含15天)排污達(dá)標(biāo).整改過程中,所排污水中硫化物的濃度y(mg/L)與時間x(天)的變化規(guī)律如圖所示,其中線段AB表示前3天的變化規(guī)律,從第3天起,所排污水中硫化物的濃度y與時間x成反比例關(guān)系.
(1)求整改過程中硫化物的濃度y與時間x的函數(shù)表達(dá)式;
(2)該企業(yè)所排污水中硫化物的濃度,能否在15天以內(nèi)不超過最高允許的1.0mg/L?為什么?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,將邊長為10的正三角形OAB放置于平面直角坐標(biāo)系xOy中,C是AB邊上的動點(不與端點A,B重合),作CD⊥OB于點D,若點C,D都在雙曲線y= 上(k>0,x>0),則k的值為( )
A.25
B.18
C.9
D.9
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小明從家騎自行車出發(fā),沿一條直路到相距2400m的郵局辦事,小明出發(fā)的同時,他的爸爸以96m/min速度從郵局同一條道路步行回家,小明在郵局停留2min后沿原路以原速返回,設(shè)他們出發(fā)后經(jīng)過t min時,小明與家之間的距離為s1m,小明爸爸與家之間的距離為s2m,圖中折線OABD、線段EF分別表示s1、s2與t之間的函數(shù)關(guān)系的圖象.
(1)求s2與t之間的函數(shù)關(guān)系式;
(2)小明從家出發(fā),經(jīng)過多長時間在返回途中追上爸爸?這時他們距離家還有多遠(yuǎn)?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠A=90°,AB=AC,BC=20,DE是△ABC的中位線,點M是邊BC上一點,BM=3,點N是線段MC上的一個動點,連接DN,ME,DN與ME相交于點O.若△OMN是直角三角形,則DO的長是
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,隨機地閉合開關(guān)S1 , S2 , S3 , S4 , S5中的三個,能夠使燈泡L1 , L2同時發(fā)光的概率是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】聊城“水城之眼”摩天輪是亞洲三大摩天輪之一,也是全球首座建筑與摩天輪相結(jié)合的城市地標(biāo),如圖,點O是摩天輪的圓心,長為110米的AB是其垂直地面的直徑,小瑩在地面C點處利用測角儀測得摩天輪的最高點A的仰角為33°,測得圓心O的仰角為21°,則小瑩所在C點到直徑AB所在直線的距離約為(tan33°≈0.65,tan21°≈0.38)( 。
A.169米
B.204米
C.240米
D.407米
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com