【題目】某公司生產(chǎn)的某種產(chǎn)品每件成本為40元,經(jīng)市場(chǎng)調(diào)查整理出如下信息:①該產(chǎn)品90天內(nèi)日銷(xiāo)售量(m件)與時(shí)間(第x天)滿足一次函數(shù)關(guān)系,部分?jǐn)?shù)據(jù)如下表:
②該產(chǎn)品90天內(nèi)每天的銷(xiāo)售價(jià)格與時(shí)間(第x天)的關(guān)系如下表:
(1)求m關(guān)于x的一次函數(shù)表達(dá)式;
(2)設(shè)銷(xiāo)售該產(chǎn)品每天利潤(rùn)為y元,請(qǐng)寫(xiě)出y關(guān)于x的函數(shù)表達(dá)式,并求出在90天內(nèi)該產(chǎn)品哪天的銷(xiāo)售利潤(rùn)最大?最大利潤(rùn)是多少?【提示:每天銷(xiāo)售利潤(rùn)=日銷(xiāo)售量×(每件銷(xiāo)售價(jià)格﹣每件成本)】
(3)在該產(chǎn)品銷(xiāo)售的過(guò)程中,共有多少天銷(xiāo)售利潤(rùn)不低于5400元,請(qǐng)直接寫(xiě)出結(jié)果.
【答案】(1)m=﹣2x+200;(2),第40天的銷(xiāo)售利潤(rùn)最大,最大利潤(rùn)是7200元;(3)46.
【解析】
試題分析:(1)根據(jù)待定系數(shù)法解出一次函數(shù)解析式即可;
(2)設(shè)利潤(rùn)為y元,則當(dāng)1≤x<50時(shí), ;當(dāng)50≤x≤90時(shí),,分別求出各段上的最大值,比較即可得到結(jié)論;
(3)直接寫(xiě)出在該產(chǎn)品銷(xiāo)售的過(guò)程中,共有46天銷(xiāo)售利潤(rùn)不低于5400元.
試題解析:(1)∵m與x成一次函數(shù),∴設(shè),將x=1,m=198,x=3,m=194代入,得:,解得:,所以m關(guān)于x的一次函數(shù)表達(dá)式為;
(2)設(shè)銷(xiāo)售該產(chǎn)品每天利潤(rùn)為y元,y關(guān)于x的函數(shù)表達(dá)式為:,當(dāng)1≤x<50時(shí),=,∵﹣2<0,∴當(dāng)x=40時(shí),y有最大值,最大值是7200;
當(dāng)50≤x≤90時(shí),,∵﹣120<0,∴y隨x增大而減小,即當(dāng)x=50時(shí),y的值最大,最大值是6000;
綜上所述,當(dāng)x=40時(shí),y的值最大,最大值是7200,即在90天內(nèi)該產(chǎn)品第40天的銷(xiāo)售利潤(rùn)最大,最大利潤(rùn)是7200元;
(3)在該產(chǎn)品銷(xiāo)售的過(guò)程中,共有46天銷(xiāo)售利潤(rùn)不低于5400元.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,CD⊥AB,垂足為D,點(diǎn)E在BC上,EF⊥AB,垂足為F.
(1)CD與EF平行嗎?請(qǐng)說(shuō)明理由.
(2)如果∠1=∠2,且∠ACB=110°,求∠3的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列運(yùn)算正確的是( 。
A. 3a+2b=5ab B. 5a﹣2a=3a C. b2b3=b6 D. (x+y)2=x2+y2
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某品牌的共享自行車(chē)企業(yè)為了解工作日期間地鐵站附近的自行車(chē)使用情況,做到精確投放,于星期二當(dāng)天對(duì)荔灣區(qū)A、B、C三個(gè)地鐵站該品牌自行車(chē)后使用量進(jìn)行了統(tǒng)計(jì),繪制如圖1和圖2所示的統(tǒng)計(jì)圖,根據(jù)圖中信息解答下列問(wèn)題:
(1)該品牌自行車(chē)當(dāng)天在該三個(gè)地鐵站區(qū)域投放了自行車(chē)輛.
(2)請(qǐng)補(bǔ)全圖1中的條形統(tǒng)計(jì)圖;求出地鐵A站在圖2中所對(duì)應(yīng)的圓心角的度數(shù).
(3)按統(tǒng)計(jì)情況,若該品牌車(chē)計(jì)劃在這些區(qū)域再投放1200輛,估計(jì)在地鐵B站應(yīng)投入多少輛.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】按要求完成計(jì)算:
(1)先化簡(jiǎn),再求值:(4ab3﹣8a2b2)÷4ab+(2a+b)(2a﹣b),其中a=2,b=1.
(2)因式分解:3x2﹣6axy+3ay2.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1所示,已知拋物線的頂點(diǎn)為D,與x軸交于A、B兩點(diǎn),與y軸交于C點(diǎn),E為對(duì)稱(chēng)軸上的一點(diǎn),連接CE,將線段CE繞點(diǎn)E按逆時(shí)針?lè)较蛐D(zhuǎn)90°后,點(diǎn)C的對(duì)應(yīng)點(diǎn)C′恰好落在y軸上.
(1)直接寫(xiě)出D點(diǎn)和E點(diǎn)的坐標(biāo);
(2)點(diǎn)F為直線C′E與已知拋物線的一個(gè)交點(diǎn),點(diǎn)H是拋物線上C與F之間的一個(gè)動(dòng)點(diǎn),若過(guò)點(diǎn)H作直線HG與y軸平行,且與直線C′E交于點(diǎn)G,設(shè)點(diǎn)H的橫坐標(biāo)為m(0<m<4),那么當(dāng)m為何值時(shí),=5:6?
(3)圖2所示的拋物線是由向右平移1個(gè)單位后得到的,點(diǎn)T(5,y)在拋物線上,點(diǎn)P是拋物線上O與T之間的任意一點(diǎn),在線段OT上是否存在一點(diǎn)Q,使△PQT是等腰直角三角形?若存在,求出點(diǎn)Q的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】拋物線y=ax2﹣2x與x軸正半軸相交于點(diǎn)A,頂點(diǎn)為B.
(1)用含a的式子表示點(diǎn)B的坐標(biāo);
(2)經(jīng)過(guò)點(diǎn)C(0,﹣2)的直線AC與OB(O為原點(diǎn))相交于點(diǎn)D,與拋物線的對(duì)稱(chēng)軸相交于點(diǎn)E,△OCD≌△BED,求a的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,河的兩岸l1與l2相互平行,A、B是l1上的兩點(diǎn),C、D是l2上的兩點(diǎn),某人在點(diǎn)A處測(cè)得∠CAB=90°,∠DAB=30°,再沿AB方向前進(jìn)20米到達(dá)點(diǎn)E(點(diǎn)E在線段AB上),測(cè)得∠DEB=60°,求C、D兩點(diǎn)間的距離.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com