【題目】如圖,在平面直角坐標(biāo)系中,直線(xiàn)l的函數(shù)表達(dá)式為y=x,點(diǎn)O1的坐標(biāo)為(1,0),以O1為圓心,O1O為半徑畫(huà)圓,交直線(xiàn)l于點(diǎn)P1,交x軸正半軸于點(diǎn)O2,以O2為圓心,O2O為半徑畫(huà)圓,交直線(xiàn)l于點(diǎn)P2,交x軸正半軸于點(diǎn)O3,以O3為圓心,O3O為半徑畫(huà)圓,交直線(xiàn)l于點(diǎn)P3,交x軸正半軸于點(diǎn)O4;…按此做法進(jìn)行下去,其中的長(zhǎng)為_____.
【答案】22015π
【解析】
連接P1O1,P2O2,P3O3,易求得PnOn垂直于x軸,可知為圓的周長(zhǎng),再找出圓半徑的規(guī)律即可解題.
解:連接P1O1,P2O2,P3O3…,
∵P1 是⊙O1上的點(diǎn),
∴P1O1=OO1,
∵直線(xiàn)l解析式為y=x,
∴∠P1OO1=45°,
∴△P1OO1為等腰直角三角形,即P1O1⊥x軸,
同理,PnOn垂直于x軸,
∴ 為圓的周長(zhǎng),
∵以O1為圓心,O1O為半徑畫(huà)圓,交x軸正半軸于點(diǎn)O2,以O2為圓心,O2O為半徑畫(huà)圓,交x軸正半軸于點(diǎn)O3,以此類(lèi)推,
∴OO1=1=20,OO2=2=21,OO3=4=22,OO4=8=23,…,
∴OOn=,
∴,
∴,
故答案為:22015π.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,一次函數(shù)y1=x+2的圖象與反比例函數(shù)y2=(k≠0)的圖象交于A、B兩點(diǎn),且點(diǎn)A的坐標(biāo)為(1,m).
(1)求反比例函數(shù)的表達(dá)式及點(diǎn)B的坐標(biāo);
(2)根據(jù)圖象直接寫(xiě)出當(dāng)y1>y2時(shí)x的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,菱形的對(duì)角線(xiàn)經(jīng)過(guò)原點(diǎn),與交于點(diǎn)軸于點(diǎn),點(diǎn)D的坐標(biāo)為反比例函數(shù)的圖象恰好經(jīng)過(guò)兩點(diǎn).
(1)求的值及所在直線(xiàn)的表達(dá)式;
(2)求證:.
(3)求的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,拋物線(xiàn)與軸的兩個(gè)交點(diǎn)分別是、,為頂點(diǎn).
(1)求、的值和頂點(diǎn)的坐標(biāo);
(2)在軸上是否存在點(diǎn),使得是以為斜邊的直角三角形?若存在,求出點(diǎn)的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,四邊形OABC為矩形,OA=4,OC=5,正比例函數(shù)y=2x的圖像交AB于點(diǎn)D,連接DC,動(dòng)點(diǎn)Q從D點(diǎn)出發(fā)沿DC向終點(diǎn)C運(yùn)動(dòng),動(dòng)點(diǎn)P從C點(diǎn)出發(fā)沿CO向終點(diǎn)O運(yùn)動(dòng).兩點(diǎn)同時(shí)出發(fā),速度均為每秒1個(gè)單位,設(shè)從出發(fā)起運(yùn)動(dòng)了t s.
(1)求點(diǎn)D的坐標(biāo);
(2)若PQ∥OD,求此時(shí)t的值?
(3)是否存在時(shí)刻某個(gè)t,使S△DOP=S△PCQ?若存在,請(qǐng)求出t的值,若不存在,請(qǐng)說(shuō)明理由;
(4)當(dāng)t為何值時(shí),△DPQ是以DQ為腰的等腰三角形?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】鄂州市化工材料經(jīng)銷(xiāo)公司購(gòu)進(jìn)一種化工原料若干千克,價(jià)格為每千 克30元.物價(jià)部門(mén)規(guī)定其銷(xiāo)售單價(jià)不高于每千克60元,不低于每千克30元.經(jīng)市場(chǎng)調(diào)查發(fā)現(xiàn):日銷(xiāo)售量y(千克)是銷(xiāo)售單價(jià)x(元)的一次函數(shù),且當(dāng)x=60時(shí) ,y=80;x=50時(shí),y=100.在銷(xiāo)售過(guò)程中,每天還要支付其他費(fèi)用450元.
(1)(3分)求出y與x的函數(shù)關(guān)系式,并寫(xiě)出自變量x的取值范圍.
(2)(3分)求該公司銷(xiāo)售該原料日獲利w(元)與銷(xiāo)售單價(jià)x(元)之間的函數(shù)關(guān)系式.
(3)(4分)當(dāng)銷(xiāo)售單價(jià)為多少元時(shí),該公司日獲利最大?最大獲利是多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】開(kāi)學(xué)初期,天氣炎熱,水杯需求量大.雙福育才中學(xué)門(mén)口某超市購(gòu)進(jìn)一批水杯,其中A種水杯進(jìn)價(jià)為每個(gè)15元,售價(jià)為每個(gè)25元;B種水杯進(jìn)價(jià)為每個(gè)12元,售價(jià)為每個(gè)20元
(1)該超市平均每天可售出60個(gè)A種水杯,后來(lái)經(jīng)過(guò)市場(chǎng)調(diào)查發(fā)現(xiàn),A種水杯單價(jià)每降低1元,則平均每天的銷(xiāo)量可增加10個(gè).為了盡量讓學(xué)生得到更多的優(yōu)惠,某天該超市將A種水杯售價(jià)調(diào)整為每個(gè)m元,結(jié)果當(dāng)天銷(xiāo)售A種水杯獲利630元,求m的值.
(2)該超市準(zhǔn)備花費(fèi)不超過(guò)1600元的資金,購(gòu)進(jìn)A、B兩種水杯共120個(gè),其中B種水杯的數(shù)量不多于A種水杯數(shù)量的兩倍.請(qǐng)為該超市設(shè)計(jì)獲利最大的進(jìn)貨方案,并求出最大利潤(rùn).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,是的弦,為半徑的中點(diǎn),過(guò)作交弦于點(diǎn),交于點(diǎn),且.
(1)求證:是的切線(xiàn);
(2)連接、,求的度數(shù):
(3)如果,,,求的半徑.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(如圖 1,若拋物線(xiàn) l1 的頂點(diǎn) A 在拋物線(xiàn) l2 上,拋物線(xiàn) l2 的頂點(diǎn) B 也在拋物線(xiàn) l1 上(點(diǎn) A 與點(diǎn) B 不重合).我們稱(chēng)拋物線(xiàn) l1,l2 互為“友好”拋物線(xiàn),一條拋物線(xiàn)的“友 好”拋物線(xiàn)可以有多條.
(1)如圖2,拋物線(xiàn) l3: 與y 軸交于點(diǎn)C,點(diǎn)D與點(diǎn)C關(guān)于拋物線(xiàn)的對(duì)稱(chēng)軸對(duì)稱(chēng),則點(diǎn) D 的坐標(biāo)為 ;
(2)求以點(diǎn) D 為頂點(diǎn)的 l3 的“友好”拋物線(xiàn) l4 的表達(dá)式,并指出 l3 與 l4 中y 同時(shí)隨x增大而增大的自變量的取值范圍;
(3)若拋物線(xiàn) y=a1(x-m)2+n 的任意一條“友好”拋物線(xiàn)的表達(dá)式為 y=a2(x-h)2+k, 寫(xiě)出 a1 與a2的關(guān)系式,并說(shuō)明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com