【題目】某中學(xué)開展“綠化家鄉(xiāng)、植樹造林”活動(dòng),為了解全校植樹情況,對該校甲、乙、丙、丁四個(gè)班級植樹情況進(jìn)行了調(diào)查,將收集的數(shù)據(jù)整理并繪制成圖1和圖2兩幅尚不完整的統(tǒng)計(jì)圖,請根據(jù)圖中的信息,完成下列問題:
(1)這四個(gè)班共植樹棵;
(2)請你在答題卡上補(bǔ)全兩幅統(tǒng)計(jì)圖;
(3)求圖1中“甲”班級所對應(yīng)的扇形圓心角的度數(shù);
(4)若四個(gè)班級植樹的平均成活率是95%,全校共植樹2000棵,請你估計(jì)全校種植的樹中成活的樹有多少棵?
【答案】
(1)200
(2)解:丁所占的百分比是: ×100%=35%,
丙所占的百分比是:1﹣30%﹣20%﹣35%=15%,
則丙植樹的棵數(shù)是:200×15%=30(棵);
如圖:
(3)解:甲班級所對應(yīng)的扇形圓心角的度數(shù)是:30%×360°=108°;
(4)解:根據(jù)題意得:2000×95%=1900(棵).
答:全校種植的樹中成活的樹有1900棵.
故答案為:200.
【解析】解:(1)四個(gè)班共植樹的棵數(shù)是:
40÷20%=200(棵);
【考點(diǎn)精析】根據(jù)題目的已知條件,利用扇形統(tǒng)計(jì)圖和條形統(tǒng)計(jì)圖的相關(guān)知識可以得到問題的答案,需要掌握能清楚地表示出各部分在總體中所占的百分比.但是不能清楚地表示出每個(gè)項(xiàng)目的具體數(shù)目以及事物的變化情況;能清楚地表示出每個(gè)項(xiàng)目的具體數(shù)目,但是不能清楚地表示出各個(gè)部分在總體中所占的百分比以及事物的變化情況.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知AD∥BC,AB∥CD,E在線段BC延長線上,AE平分∠BAD.連接DE,若∠ADE=3∠CDE,∠AED=60°.
(1)求證:∠ABC=∠ADC;
(2)求∠CDE的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】課堂上學(xué)習(xí)了勾股定理后,知道“勾三、股四、弦五”.王老師給出一組數(shù)讓學(xué)生觀察:3、4、5;5、12、13;7、24、25;9、40、41;…,學(xué)生發(fā)現(xiàn)這些勾股 數(shù)的勾都是奇數(shù),且從 3 起就沒有間斷過,于是王老師提出以下問題讓學(xué)生解決.
(1)請你根據(jù)上述的規(guī)律寫出下一組勾股數(shù):11、________、________;
(2)若第一個(gè)數(shù)用字母a(a為奇數(shù),且a≥3)表示,那么后兩個(gè)數(shù)用含a的代數(shù)式分別怎么表示?小明發(fā)現(xiàn)每組第二個(gè)數(shù)有這樣的規(guī)律4=,12=,24=……,于是他很快表示了第二數(shù)為 ,則用含a的代數(shù)式表示第三個(gè)數(shù)為________;
(3)用所學(xué)知識證明你的結(jié)論.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)如圖①,已知直線l1∥l2,且l3和l1,l2分別交于A,B兩點(diǎn),點(diǎn)P在線段AB上,則∠1,∠2,∠3之間的等量關(guān)系是____;
(2)如圖②,點(diǎn)A在B處北偏東40°方向,在C處北偏西45°方向,則∠BAC=____°.
(3)如圖③,∠ABD和∠BDC的平分線交于點(diǎn)E,BE交AB于點(diǎn)F,∠1+∠2=90°,試說明:AB∥AB,并探究∠2與∠3的數(shù)量關(guān)系.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】甲、乙兩車從A地駛向B地,并以各自的速度勻速行駛,甲車比乙車早行駛2h,并且甲車途中休息了0.5h(甲車休息前后的速度相同),甲、乙兩車行駛的路程y(km)與行駛的時(shí)間x(h)的函數(shù)圖象如圖所示.根據(jù)圖象的信息有如下四個(gè)說法:①甲車行駛40千米開始休息②乙車行駛3.5小時(shí)與甲車相遇③甲車比乙車晚2.5小時(shí)到到B地④兩車相距50km時(shí)乙車行駛了小時(shí),其中正確的說法有( 。
A. 1個(gè) B. 2個(gè) C. 3個(gè) D. 4個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖①,OABC是一張放在平面直角坐標(biāo)系中的矩形紙片,O為原點(diǎn),點(diǎn)A在x軸的正半軸上,點(diǎn)C在y軸的正半軸上,OA=5,OC=4.
(1)在OC邊上取一點(diǎn)D,將紙片沿AD翻折,使點(diǎn)O落在BC邊上的點(diǎn)E處,則D點(diǎn)的坐標(biāo);E點(diǎn)的坐標(biāo) .
(2)如圖②,若AE上有一動(dòng)點(diǎn)P(不與A、E重合)自A點(diǎn)沿AE方向向E點(diǎn)勻速運(yùn)動(dòng),運(yùn)動(dòng)的速度為每秒1個(gè)單位長度,設(shè)運(yùn)動(dòng)的時(shí)間為t秒(0<t<5),過P點(diǎn)作ED的平行線交AD于點(diǎn)M,過點(diǎn)M作AE的平行線交DE于點(diǎn)N.求四邊形PMNE的面積S與時(shí)間t之間的函數(shù)關(guān)系式;t取何值時(shí),S有最大值,最大值是多少?
(3)在(2)的條件下,當(dāng)t為何值時(shí),以A、M、E為頂點(diǎn)的三角形為等腰三角形,并求出相應(yīng)時(shí)刻點(diǎn)M的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】我們來定義下面兩種數(shù):
(一)平方和數(shù):若一個(gè)三位數(shù)或者三位以上的整數(shù)分拆成最左邊、中間、最右邊三個(gè)數(shù)后滿足:中間數(shù)=(最左邊數(shù))2+(最右邊數(shù))2,我們就稱該整數(shù)為平方和數(shù).
例如:對于整數(shù)251.它中間的數(shù)字是5,最左邊數(shù)是2,最右邊數(shù)是1.
是一個(gè)平方和數(shù)
又例如:對于整數(shù)3254,它的中間數(shù)是25,最左邊數(shù)是3,最右邊數(shù)是4,
是一個(gè)平方和數(shù).當(dāng)然152和4253這兩個(gè)數(shù)也是平方和數(shù);
(二)雙倍積數(shù):若一個(gè)三位數(shù)或者三位以上的整數(shù)分拆成最左邊、中間、最右邊三個(gè)數(shù)后滿足:中間數(shù)=最左邊數(shù)最右邊數(shù),我們就稱該整數(shù)為雙倍積數(shù).
例如:對于整數(shù)163,它的中間數(shù)是6,最左邊數(shù)是1,最右邊數(shù)是3,
是一個(gè)雙倍積數(shù),
又例如:對于整數(shù)3305,它的中間數(shù)是30,最左邊數(shù)是3,最右邊數(shù)是5,
是一個(gè)雙倍積數(shù),當(dāng)然361和5303這兩個(gè)數(shù)也是雙倍積數(shù).
注意:在下面的問題中,我們統(tǒng)一用字母表示一個(gè)整數(shù)分拆出來的最左邊數(shù),用字母表示該整數(shù)分拆出來的最右邊數(shù),請根據(jù)上述定義完成下面問題:
(1)①若一個(gè)三位整數(shù)為平方和數(shù),且十位數(shù)為4,則該三位數(shù)為________;
②若一個(gè)三位整數(shù)為雙倍積數(shù),且十位數(shù)字為 6 ,則該三位數(shù)為_________;
③若一個(gè)整數(shù)既為平方和數(shù),又是雙倍積數(shù),則應(yīng)滿足的數(shù)量關(guān)系為_______;
(2)若(即這是個(gè)最左邊數(shù)為,中間數(shù)為565,最右邊數(shù)為的整數(shù),以下類同)是一個(gè)平方和數(shù),是一個(gè)雙倍積數(shù),求的值.
(3)從所有三位整數(shù)中任選一個(gè)數(shù)為雙倍積數(shù)的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,P為反比例函數(shù)y= (k>0)在第一象限內(nèi)圖象上的一點(diǎn),過點(diǎn)P分別作x軸,y軸的垂線交一次函數(shù)y=﹣x﹣4的圖象于點(diǎn)A、B.若∠AOB=135°,則k的值是( )
A.2
B.4
C.6
D.8
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知任意三角形ABC,
(1)如圖1,過點(diǎn)C作DE∥AB,求證:∠DCA=∠A;
(2)如圖1,求證:三角形ABC的三個(gè)內(nèi)角(即∠A、∠B、∠ACB)之和等于180°;
(3)如圖2,求證:∠AGF=∠AEF+∠F;
(4)如圖3,AB∥CD,∠CDE=119°,GF交∠DEB的平分線EF于點(diǎn)F,∠AGF=150°,求∠F.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com