【題目】如圖,直線分別與軸、軸交于C、D兩點(diǎn),與反比例函數(shù)的圖像相交于點(diǎn)和點(diǎn),過點(diǎn)AAMy軸于點(diǎn)M,過點(diǎn)BBNx軸于點(diǎn)N,連結(jié)MN、OA、OB.下列結(jié)論:

;;四邊形與四邊形MNCA的周長相等;.其中正確的個(gè)數(shù)是( )個(gè).

A. 1 B. 2 C. 3 D. 4

【答案】C

【解析】根據(jù)待定系數(shù)法求出直線和反比例函數(shù)的解析式,得到CD點(diǎn)的坐標(biāo),由此求出DM、AM、CN、NB的長,然后根據(jù)SAS得到,然后根據(jù)M、N的求出MN的解析式,從而判斷②,再根據(jù)①的結(jié)論和周長判斷出③,最后根據(jù)三角形的面積判斷④.

直線分別與軸、軸交于C、D兩點(diǎn),與反比例函數(shù)的圖像相交于點(diǎn)和點(diǎn)

∴一次函數(shù)的解析式為y=-2x+5,反比例函數(shù)的解析式為:y=

∴C點(diǎn)為(,0),D點(diǎn)為(0,5)

∴DM=2,AM=1,CN=1,NB=2

∵AM⊥y,BN⊥x

,

故①正確;

由M(0,3),N(,0),求得MN的解析式為:y=-2x+3,

,故②正確;

四邊形的周長=BA+AD+DM+MN+NB=(BA+AD+MN)+DM+NB=(BA+AD+MN)+4

四邊形MNCA的周長=AM+AB+BC+MN+NC=(BA+BC+MN)+AM+NC=(BA+AD+MN)+2

四邊形與四邊形MNCA的周長不相等

故③不正確;

由OD=5,AM=1,可得=OC=,NB=2,可得==,可知,故④正確.

故選:C.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】定義一種新運(yùn)算”:ab=2a﹣ab,比如1(﹣3)=2×1﹣1×(﹣3)=5

(1)求(﹣2)3的值;

(2)若(﹣3)x=(x+1)5,求x的值;

(3)若x1=2(1y),求代數(shù)式x+y+1的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABC中,AB=AC,DE是過點(diǎn)A的直線,BDDE于D,CEDE于點(diǎn)E;

(1)若B、C在DE的同側(cè)(如圖所示)且AD=CE.求證:ABAC

(2)若B、C在DE的兩側(cè)(如圖所示),其他條件不變,AB與AC仍垂直嗎?若是請(qǐng)給出證明;若不是,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知反比例函數(shù)y=﹣ 的圖象與直線y=kx(k<0)相交于點(diǎn)A、B,以AB為底作等腰三角形,使∠ACB=120°,且點(diǎn)C的位置隨著k的不同取值而發(fā)生變化,但點(diǎn)C始終在某一函數(shù)圖象上,則這個(gè)圖象所對(duì)應(yīng)的函數(shù)解析式為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖①,AE是⊙O的直徑,點(diǎn)C是⊙O上的點(diǎn),連結(jié)AC并延長AC至點(diǎn)D,使CD=CA,連結(jié)ED交⊙O于點(diǎn)B.
(1)求證:點(diǎn)C是劣弧 的中點(diǎn);
(2)如圖②,連結(jié)EC,若AE=2AC=4,求陰影部分的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在正方形ABCD中,O是對(duì)角線ACBD的交點(diǎn),MBC邊上的動(dòng)點(diǎn)(點(diǎn)M不與B、C重合),過點(diǎn)CCN垂直DMAB于點(diǎn)N,連結(jié)OM、ON、MN.下列五個(gè)結(jié)論:①△CNB≌△DMC;;ONOM;AB=2,則的最小值是1;.其中正確結(jié)論是_________.(只填番號(hào))

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC的兩條高線BD,CE相交于點(diǎn)F,已知∠ABC=60°,AB=10,CF=EF,則△ABC的面積為(
A.20
B.25
C.30
D.40

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知,M是等邊△ABCBC上的點(diǎn),如圖,連接AM,過點(diǎn)M作∠AMH=60°,MH與∠ACB的鄰補(bǔ)角的平分線交于點(diǎn)H,過HHDBC于點(diǎn)D

(1)求證:MA=MH

(2)猜想寫出CB、CM、CD之間的數(shù)量關(guān)系式,并加以證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在長方形ABCD中,AC是對(duì)角線將長方形ABCD繞點(diǎn)B順時(shí)針旋轉(zhuǎn)90°到長方形GBEF位置,HEG的中點(diǎn)AB=6,BC=8,則線段CH的長為(

A. B. C. D.

查看答案和解析>>

同步練習(xí)冊(cè)答案