【題目】如圖所示,對四邊形ABCD是平行四邊形的下列判斷,正確的打,錯誤的打“×”

1)因為ADBC,AB=CD,所以ABCD是平行四邊形.____

2)因為ABCD,AD=BC,所以ABCD是平行四邊形.____

3)因為ADBCAD=BC,所以ABCD是平行四邊形.____

4)因為ABCDADBC,所以ABCD是平行四邊形.____

5)因為AB=CD,AD=BC,所以ABCD是平行四邊形.____

6)因為AD=CD,AB=AC,所以ABCD是平行四邊形.____

【答案】× × ×

【解析】

平行四邊形的判定:①兩組對邊分別平行的四邊形是平行四邊形;②兩組對邊分別相等的四邊形是平行四邊形;③兩組對角分別相等的四邊形是平行四邊形;④對角線互相平分的四邊形是平行四邊形;⑤一組對邊平行且相等的四邊形是平行四邊形.根據(jù)判定定理判斷即可.

解:(1)(2)中的四邊形可能是等腰梯形,不能判定是平行四邊形,故錯誤;

3)(4)(5)是平行四邊形的判定定理,可判定是平行四邊形,故正確;

6)不符合平行四邊形的判定定理,不能判定是平行四邊形,故錯誤;

故答案為:(1).×;(2).×;(3).∨;(4).∨;(5).∨;(6).×.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知拋物線y1=﹣x2+4x和直線y2=2x.我們規(guī)定:當(dāng)x取任意一個值時,x對應(yīng)的函數(shù)值分別為y1y2,若y1≠y2,取y1y2中較小值為M;若y1=y2,記M=y1=y2①當(dāng)x>2時,M=y2②當(dāng)x<0時,Mx的增大而增大;③使得M大于4x的值不存在;④若M=2,則x=1.上述結(jié)論正確的是_____(填寫所有正確結(jié)論的序號).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】利用對稱性可設(shè)計出美麗的圖案.在邊長為1的方格紙中,有如圖所示的四邊形(頂點都在格點上)

(1)先作出該四邊形關(guān)于直線成軸對稱的圖形,再作出你所作的圖形連同原四邊形繞0點按順時針方向旋轉(zhuǎn)90o后的圖形;

(2)完成上述設(shè)計后,整個圖案的面積等于_________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】1)解方程:4x+12-169=0;

2)一圓柱高8cm,底面半徑2cm,一只螞蟻從點A爬到點B處吃食,要爬行的最短路程(π3)是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,∠ABD和∠BDC的平分線交于E,BECD于點F,∠1+2=90°

1)試說明:ABCD;

2)若∠2=25°,求∠3的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】今年是我市全面推進(jìn)中小學(xué)校社會主義核心價值觀教育年.某校對全校學(xué)生進(jìn)行了中期檢測評價,檢測結(jié)果分為(優(yōu)秀)、(良好)、(合格)、(不合格)四個等級.并隨機(jī)抽取若干名學(xué)生的檢測結(jié)果作為樣本進(jìn)行數(shù)據(jù)處理,制作了如下所示不完整的統(tǒng)計表(圖1)和統(tǒng)計圖(圖2).

請根據(jù)圖1、圖2提供的信息,解答下列問題:

(1)本次隨機(jī)抽取的樣本容量為

(2) , .

(3)請在圖2中補(bǔ)全條形統(tǒng)計圖.

(4)若該校共有學(xué)生800人,據(jù)此估算,該校學(xué)生在本次檢測中達(dá)到(優(yōu)秀)”等級的學(xué)生人數(shù)為 .

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,將一個小球從斜坡的點O處拋出,小球的拋出路線可以用二次函數(shù)y=4x﹣x2刻畫,斜坡可以用一次函數(shù)y=x刻畫,下列結(jié)論錯誤的是( 。

A. 當(dāng)小球拋出高度達(dá)到7.5m時,小球水平距O點水平距離為3m

B. 小球距O點水平距離超過4米呈下降趨勢

C. 小球落地點距O點水平距離為7

D. 斜坡的坡度為1:2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知四邊形ABCD的對角線AC,BD互相垂直,則下列條件能判定四邊形ABCD為菱形的是( )

A. ACBD互相平分

B. BABC

C. ACBD

D. ABCD

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】若一次函數(shù)y=kx+by軸上的截距為4且與兩坐標(biāo)軸圍成的三角形面積為4,則此一次函數(shù)解析式為________________

查看答案和解析>>

同步練習(xí)冊答案