【題目】閱讀下面材料:

在數(shù)學(xué)課上,老師提出如下問題:

尺規(guī)作圖:作一條線段的垂直平分線.

已知:線段AB.

求作:線段AB的垂直平分線.

小紅的作法如下:

如圖,①分別以點(diǎn)A和點(diǎn)B為圓心,大于AB的長為半徑作弧,兩弧相交于點(diǎn)C;

②再分別以點(diǎn)A和點(diǎn)B為圓心,大于AB的長為半徑(不同于①中的半徑)作弧,兩弧相交于點(diǎn)D,使點(diǎn)D與點(diǎn)C在直線AB的同側(cè);

③作直線CD.

所以直線CD就是所求作的垂直平分線.

老師說:“小紅的作法正確.”

請回答:小紅的作圖依據(jù)是_____

【答案】到線段兩個端點(diǎn)距離相等的點(diǎn)在這條線段的垂直平分線上;兩點(diǎn)確定一條直線.

【解析】分析:根據(jù)線段垂直平分線的作法即可得出結(jié)論.

詳解:如圖,

∵由作圖可知,AC=BC=AD=BD,

∴直線CD就是線段AB的垂直平分線.

故答案為:到線段兩個端點(diǎn)距離相等的點(diǎn)在這條線段的垂直平分線上;兩點(diǎn)確定一條直線.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形ABCD中,AC,BD相交于點(diǎn)OOAC的中點(diǎn),AD∥BC.

1)求證:四邊形ABCD是平行四邊形

2)若AC⊥BD,且AB=4,則四邊形ABCD的周長為________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,ADBC邊上的高, .

1)求證:ACBD;

2)若,直接寫出AD的長是__________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,菱形ABCD中,AB=1,∠A=60°,EFGH是矩形,矩形的頂點(diǎn)都在菱形的邊上.設(shè)AE=AH=x0x1),矩形的面積為S

1)求S關(guān)于x的函數(shù)解析式;

2)當(dāng)EFGH是正方形時,求S的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知反比例函數(shù)y1的圖象與一次函數(shù)y2axb的圖象交于點(diǎn)A(1,4)和點(diǎn)Bm,-2).

(1)求這兩個函數(shù)的表達(dá)式;

(2)根據(jù)圖象直接寫出一次函數(shù)的值大于反比例函數(shù)的值的x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知點(diǎn)AB、C是數(shù)軸上三點(diǎn),O為原點(diǎn).點(diǎn)C對應(yīng)的數(shù)為6,BC4,AB12

1)求點(diǎn)A、B對應(yīng)的數(shù);

2)動點(diǎn)PQ分別同時從A、C出發(fā),分別以每秒6個單位和3個單位的速度沿數(shù)軸正方向運(yùn)動.MAP的中點(diǎn),NCQ上,且CNCQ,設(shè)運(yùn)動時間為tt0).

①求點(diǎn)M、N對應(yīng)的數(shù)(用含t的式子表示); t為何值時,OM2BN

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,某點(diǎn)從數(shù)軸上的A點(diǎn)出發(fā),第1次向右移動1個單位長度至B點(diǎn),第2次從B點(diǎn)向左移動2個單位長度至C點(diǎn),第3次從C點(diǎn)向右移動3個單位長度至D點(diǎn),第4次從D點(diǎn)向左移動4個單位長度至E點(diǎn),,依此類推,經(jīng)過_________次移動后該點(diǎn)到原點(diǎn)的距離為2019個單位長度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】探究:小明在求同一坐標(biāo)軸上兩點(diǎn)間的距離時發(fā)現(xiàn),對于平面直角坐標(biāo)系內(nèi)任意兩點(diǎn)P1x1,y1,P2x2,y2,可通過構(gòu)造直角三角形利用圖1得到結(jié)論:,他還利用圖2證明了線段P1P2的中點(diǎn)Px,y的坐標(biāo)公式:

1)已知點(diǎn)M2,1,N2,5,則線段MN長度為 ;

2)請求出以點(diǎn)A2,2,B2,0,C3,1D為頂點(diǎn)的平行四邊形頂點(diǎn)D的坐標(biāo);

3)如圖3,OL滿足y2xx0,點(diǎn)P2,1OLx軸正半軸所夾的內(nèi)部一點(diǎn),請?jiān)?/span>OLx軸上分別找出點(diǎn)E、F,使PEF的周長最小,求出周長的最小值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】綜合與實(shí)踐

問題情境:在數(shù)學(xué)活動課上,我們給出如下定義:順次連按任意一個四邊形各邊中點(diǎn)所得的四邊形叫中點(diǎn)四邊形.如圖(1),在四邊形ABCD中,點(diǎn)E,F,G,H分別為邊AB,BCCD,DA的中點(diǎn).試說明中點(diǎn)四邊形EFGH是平行四邊形.

探究展示:勤奮小組的解題思路:

反思交流:

1上述解題思路中的依據(jù)1”依據(jù)2”分別是什么?

依據(jù)1   ;依據(jù)2   

連接AC,若ACBD時,則中點(diǎn)四邊形EFGH的形狀為   ;

創(chuàng)新小組受到勤奮小組的啟發(fā),繼續(xù)探究:

2)如圖(2),點(diǎn)P是四邊形ABCD內(nèi)一點(diǎn),且滿足PAPB,PCPD,APBCPD,點(diǎn)E,F,GH分別為邊AB,BCCD,DA的中點(diǎn),猜想中點(diǎn)四邊形EFGH的形狀,并說明理由;

3)若改變(2)中的條件,使APBCPD90°,其它條件不變,則中點(diǎn)四邊形EFGH的形狀為   

查看答案和解析>>

同步練習(xí)冊答案