【題目】閱讀與計(jì)算,請閱讀以下材料,并完成相應(yīng)的問題.

角平分線分線段成比例定理,如圖1,在△ABC中,AD平分∠BAC,則.下面是這個(gè)定理的部分證明過程.

證明:如圖2,過CCEDA.交BA的延長線于E.…

任務(wù):(1)請按照上面的證明思路,寫出該證明的剩余部分;

2)填空:如圖3,已知RtABC中,AB3BC4,∠ABC90°,AD平分∠BAC,則△ABD的周長是   

【答案】1)見解析;(2

【解析】

1)過CCEDA.交BA的延長線于E,利用平行線分線段成比例定理得到,利用平行線的性質(zhì)得∠2=ACE,∠1=E,由∠1=2得∠ACE=E,所以AE=AC,于是有;
2)先利用勾股定理計(jì)算出AC=5,再利用(1)中的結(jié)論得到,即,則可計(jì)算出BD=,然后利用勾股定理計(jì)算出AD=,從而可得到ABD的周長.

1)過CCEDA.交BA的延長線于E,

CEAD,

,∠2=∠ACE,∠1=∠E,

AD平分∠BAC

∴∠1=∠2,

∴∠ACE=∠E

AEAC,

;

2)∵AB3,BC4,∠ABC90°,

AC5

AD平分∠BAC,

,即,

BD,

AD,

∴△ABD的周長=+3+

故答案為:

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,正方形ABCD的邊長為4,動(dòng)點(diǎn)M、N同時(shí)從A點(diǎn)出發(fā),點(diǎn)M沿AB以每秒1個(gè)單位長度的速度向中點(diǎn)B運(yùn)動(dòng),點(diǎn)N沿折現(xiàn)ADC以每秒2個(gè)單位長度的速度向終點(diǎn)C運(yùn)動(dòng),設(shè)運(yùn)動(dòng)時(shí)間為t秒,則CMN的面積為S關(guān)于t函數(shù)的圖象大致是(  )

A. B.

C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】隨著城市化建設(shè)的發(fā)展,交通擁堵成為上班高峰時(shí)難以避免的現(xiàn)象.為了解龍泉驛某條道路交通擁堵情況,龍泉某中學(xué)同學(xué)經(jīng)實(shí)地統(tǒng)計(jì)分析研究表明:當(dāng)時(shí),車流速度v(千米/小時(shí))是車流密度x(輛/千米)的一次函數(shù).當(dāng)該道路的車流密度達(dá)到220/千米時(shí),造成堵塞,此時(shí)車流速度為0千米/小時(shí);當(dāng)車流密度為95/千米時(shí),車流速度為50千米/小時(shí).

1)當(dāng)時(shí),求車流速度v(千米/小時(shí))與車流密度x(輛/千米)的函數(shù)關(guān)系式;

2)為使該道路上車流速度大于40千米/小時(shí)且小于60千米/小時(shí),應(yīng)控制該道路上的車流密度在什么范圍內(nèi)?

3)車流量(輛/小時(shí))是單位時(shí)間內(nèi)通過該道路上某觀測點(diǎn)的車輛數(shù),即:車流量=車流速度×車流密度.當(dāng)時(shí),求該道路上車流量y的最大值.此時(shí)車流速度為多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,在平面直角坐標(biāo)系中,直線x軸、y軸分別交于點(diǎn)A和點(diǎn)B0,-1),拋物線經(jīng)過點(diǎn)B,且與直線l的另一個(gè)交點(diǎn)為C4,n).

1)求n的值和拋物線的解析式;

2)點(diǎn)D在拋物線上,且點(diǎn)D的橫坐標(biāo)為t0<t<4),DEy軸交直線l于點(diǎn)E,點(diǎn)F在直線l上,且四邊形DFEG為矩形(如圖2).若矩形DFEG的周長為p,求pt的函數(shù)關(guān)系式以及p的最大值;

3M是平面內(nèi)一點(diǎn),將AOB繞點(diǎn)M沿逆時(shí)針方向旋轉(zhuǎn)90°后,得到A'O'B',點(diǎn)AO、B的對應(yīng)點(diǎn)分別是點(diǎn)A'、O'、B' A'O'B'的兩個(gè)頂點(diǎn)恰好落在拋物線上,請直接寫出點(diǎn)A的橫坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,拋物線yx2+bx+cx軸交于點(diǎn)AC1,0),與y軸交于點(diǎn)B0,﹣3).

1)求拋物線的解析式;

2)點(diǎn)P是直線AB下方的拋物線上一動(dòng)點(diǎn),過點(diǎn)Px軸的垂線,垂足為點(diǎn)F,交直線AB于點(diǎn)E,作PDAB于點(diǎn)D.當(dāng)PDE的周長最大時(shí),求出點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線軸、軸分別相交于兩點(diǎn),拋物線經(jīng)過點(diǎn)

1)求該拋物線的函數(shù)表達(dá)式:

2)已知點(diǎn)是拋物線上的一個(gè)動(dòng)點(diǎn),并且點(diǎn)在第一象限內(nèi),連接、,設(shè)點(diǎn)的橫坐標(biāo)為,的面積為,求的函數(shù)表達(dá)式,并求出的最大值;

3)在(2)的條件下,當(dāng)取得最大值時(shí)動(dòng)點(diǎn)相應(yīng)的位置記為點(diǎn),寫出點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知AB⊙O的直徑,點(diǎn)C⊙O上,過點(diǎn)C的直線與AB的延長線交于點(diǎn)P,AC=PC∠COB=2∠PCB.

1)求證:PC⊙O的切線;

2)求證:BC=AB;

3)點(diǎn)M是弧AB的中點(diǎn),CMAB于點(diǎn)N,若AB=4,求MNMC的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知平行四邊形, ,垂足為的延長線相交于,,連接

(1)如圖,求證:四邊形是菱形;

(2)如圖,連接,,在不添加任何輔助線的情況下,直接寫出圖中所有面積等于的面積的鈍角三角形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】有一邊是另一邊的倍的三角形叫做智慧三角形,這兩邊中較長邊稱為智慧邊,這兩邊的 夾角叫做智慧角.

(1)在 Rt△ABC 中,∠ACB=90°,若∠A 為智慧角,則∠B 的度數(shù)為

(2)如圖①,在△ABC 中,∠A=45°,∠B=30°,求證:△ABC 是智慧三角形;

(3)如圖②,△ABC 是智慧三角形,BC 為智慧邊,∠B 為智慧角,A(3,0),點(diǎn) B,C 在函數(shù) y x>0)的圖像上,點(diǎn) C 在點(diǎn) B 的上方,且點(diǎn) B 的縱坐標(biāo)為.當(dāng)△ABC是直角三角形時(shí),求 k 的值.

查看答案和解析>>

同步練習(xí)冊答案