(2011•德州)為創(chuàng)建“國家衛(wèi)生城市”,進一步優(yōu)化市中心城區(qū)的環(huán)境,德州市政府擬對部分路段的人行道地磚、花池、排水管道等公用設施全面更新改造,根據(jù)市政建設的需要,須在60天內(nèi)完成工程.現(xiàn)在甲、乙兩個工程隊有能力承包這個工程.經(jīng)調(diào)查知道:乙隊單獨完成此項工程的時間比甲隊單獨完成多用25天,甲、乙兩隊合作完成工程需要30天,甲隊每天的工程費用2500元,乙隊每天的工程費用2000元.
(1)甲、乙兩個工程隊單獨完成各需多少天?
(2)請你設計一種符合要求的施工方案,并求出所需的工程費用.
解:(1)設甲工程隊單獨完成該工程需x天,則乙工程隊單獨完成該工程需(x+25)天.(1分)
根據(jù)題意得:.(3分)
方程兩邊同乘以x(x+25),得30(x+25)+30x=x(x+25),
即x2﹣35x﹣750=0.
解之,得x1=50,x2=﹣15.(5分)
經(jīng)檢驗,x1=50,x2=﹣15都是原方程的解.
但x2=﹣15不符合題意,應舍去.(6分)
∴當x=50時,x+25=75.
答:甲工程隊單獨完成該工程需50天,則乙工程隊單獨完成該工程需75天.(7分)
(2)此問題只要設計出符合條件的一種方案即可.
方案一:由甲工程隊單獨完成.(8分)
所需費用為:2500×50=125000(元).(10分)
方案二:由甲乙兩隊合作完成.
所需費用為:(2500+2000)×30=135000(元).(10分)
解析
科目:初中數(shù)學 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學 來源:2011年初中畢業(yè)升學考試(江蘇省蘇州市卷)數(shù)學 題型:解答題
(2011•德州)在直角坐標系xoy中,已知點P是反比例函數(shù)(x>0)圖象上一個動點,以P為圓心的圓始終與y軸相切,設切點為A.
(1)如圖1,⊙P運動到與x軸相切,設切點為K,試判斷四邊形OKPA的形狀,并說明理由.
(2)如圖2,⊙P運動到與x軸相交,設交點為B,C.當四邊形ABCP是菱形時:
①求出點A,B,C的坐標.
②在過A,B,C三點的拋物線上是否存在點M,使△MBP的面積是菱形ABCP面積的.若存在,試求出所有滿足條件的M點的坐標,若不存在,試說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com