【題目】如圖所示,MN是⊙O的直徑,作AB⊥MN,垂足為點D,連接AM,AN,點C為上一點,且,連接CM,交AB于點E,交AN于點F,現(xiàn)給出以下結(jié)論:①AD=BD;②∠MAN=90°;③;④∠ACM+∠ANM=∠MOB;⑤AE=MF.
其中正確結(jié)論的個數(shù)是( 。
A. 2 B. 3 C. 4 D. 5
科目:初中數(shù)學(xué) 來源: 題型:
【題目】2018年4月23日,第23個世界讀書日.為了推進(jìn)中華傳統(tǒng)文化教育,營造濃郁的讀書氛圍,我區(qū)某學(xué)校舉辦了“讓讀書成為習(xí)慣,讓書香飄滿校園”主題活動,為此特為每個班級訂購了一批新的圖書.初二年級兩個班訂購圖書情況如下表:
老舍文集(套) | 四大名著(套) | 總費用(元) | |
初二(1)班 | 4 | 2 | 480 |
初二(2)班 | 2 | 3 | 520 |
(1)求老舍文集和四大名著每套各是多少元;
(2)學(xué)校準(zhǔn)備再購買老舍文集和四大名著共10套,總費用不超過700元,問學(xué)校有哪幾種購買方案.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一個不透明的口袋里裝著紅、黃、綠三種只有顏色不同的球,其中紅球有2個,黃球有1個,從中任意摸出1球是紅球的概率為.
(1)試求袋中綠球的個數(shù);
(2)第1次從袋中任意摸出1球(不放回),第2次再任意摸出1球,請你用畫樹狀圖或列表格的方法,求兩次都摸到紅球的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,直線y=﹣x+2與反比例函數(shù)y=的圖象有唯一公共點,若直線y=﹣x+b與反比例函數(shù)y=的圖象有2個公共點,則b的取值范圍是( )
A. b>2 B. ﹣2<b<2 C. b>2或b<﹣2 D. b<﹣2
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,在梯形ABCD中,AD∥BC,∠B=90°,AD=24cm,BC=26cm,動點P從點A出發(fā)沿AD方向向點D以1cm/s的速度運動,動點Q從點C開始沿著CB方向向點B以3cm/s的速度運動.點P、Q分別從點A和點C同時出發(fā),當(dāng)其中一點到達(dá)端點時,另一點隨之停止運動.
(1)經(jīng)過多長時間,四邊形PQCD是平行四邊形?
(2)經(jīng)過多長時間,四邊形PQBA是矩形?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】探究與發(fā)現(xiàn):如圖1所示的圖形,像我們常見的學(xué)習(xí)用品﹣﹣圓規(guī).我們不妨把這樣圖形叫做“規(guī)形圖”.
(1)觀察“規(guī)形圖”,試探究∠BDC與∠A、∠B、∠C之間的關(guān)系,并說明理由;
(2)請你直接利用以上結(jié)論,解決以下三個問題:
①如圖2,把一塊三角尺XYZ放置在△ABC上,使三角尺的兩條直角邊XY、XZ恰好經(jīng)過點B、C,∠A=40°,則∠ABX+∠ACX= °;
②如圖3,DC平分∠ADB,EC平分∠AEB,若∠DAE=40°,∠DBE=130°,求∠DCE的度數(shù);
③如圖4,∠ABD,∠ACD的10等分線相交于點G1、G2…、G9,若∠BDC=133°,∠BG1C=70°,求∠A的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,四邊形ABCD為矩形,AB=10,BC=3,點E是CD的中點,點P在AB上以每秒2個單位的速度由A向B運動,(1)t為何值時,四邊形PDEB是平行四邊形?(2)點Q是直線AB上的動點,若以DEQP四點為頂點的四邊形是菱形,求t值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小瑩、小亮準(zhǔn)備參加中考模擬考試,學(xué)校規(guī)定考生每人占一個桌子,按考號人座.考號按如圖方式貼在桌子上,請回答下面的問題:
(1)小瑩的考號是13,小亮的考號是24,在圖中對應(yīng)的“□”中,請用他們的名字分別標(biāo)出他們在考場內(nèi)座位的位置;
(2)某同學(xué)座位的位置在第a行和第b列的相交的“□”處,用數(shù)對表示是(a,b),那么小瑩的位置用數(shù)對表示是( ),小亮的位置用數(shù)對表示是( ).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知∠MON=30°,B為OM上一點,BA⊥ON于點A,四邊形ABCD為正方形,P為射線BM上一動點,連結(jié)CP,將CP繞點C順時針方向旋轉(zhuǎn)90°得CE,連接BE,若AB=2,則BE的最小值為( )
A. +1B. 2﹣1C. 3D. 4﹣
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com