【題目】如圖,拋物線y=ax2+bx﹣5與坐標(biāo)軸交于A(﹣1,0),B(5,0),C(0,﹣5)三點(diǎn),頂點(diǎn)為D.
(1)請(qǐng)直接寫(xiě)出拋物線的解析式及頂點(diǎn)D的坐標(biāo);
(2)連接BC與拋物線的對(duì)稱(chēng)軸交于點(diǎn)E,點(diǎn)P為線段BC上的一個(gè)動(dòng)點(diǎn)(點(diǎn)P不與B、C兩點(diǎn)重合),過(guò)點(diǎn)P作PF∥DE交拋物線于點(diǎn)F,設(shè)點(diǎn)P的橫坐標(biāo)為m.
①是否存在點(diǎn)P,使四邊形PEDF為平行四邊形?若存在,求出點(diǎn)P的坐標(biāo);若不存在,說(shuō)明理由.
②過(guò)點(diǎn)F作FH⊥BC于點(diǎn)H,求△PFH周長(zhǎng)的最大值.
【答案】(1)y=x2﹣4x﹣5,頂點(diǎn)坐標(biāo)為D(2,﹣9);(2)①存在點(diǎn)P(3,﹣2)使四邊形PEDF為平行四邊形;②△PFH周長(zhǎng)的最大值為.
【解析】(1)利用待定系數(shù)法進(jìn)行求解即可得;
(2)①求出直線BC解析式,表示PF,當(dāng)PF=DE時(shí),平行四邊形存在.
②利用△PFH∽△BCO,應(yīng)用相似三角形性質(zhì)表示△PFH周長(zhǎng),應(yīng)用函數(shù)性質(zhì)討論最值即可.
(1)把A(﹣1,0),B(5,0)代入拋物線y=ax2+bx﹣5,得
,解得:,
∴y=x2﹣4x﹣5=(x-2)2-9,
∴頂點(diǎn)坐標(biāo)為D(2,﹣9);
(2)①存在,
設(shè)直線BC的函數(shù)解析式為y=kx+b(k≠0),
把B(5,0),C(0,﹣5)代入得,解得:,
∴BC解析式為y=x﹣5,
當(dāng)x=m時(shí),y=m﹣5,
∴P(m,m﹣5),
當(dāng)x=2時(shí),y=2﹣5=﹣3,
∴E(2.﹣3),
∵PF∥DE∥y軸,
∴點(diǎn)F的橫坐標(biāo)為m,
當(dāng)x=m時(shí),y=m2﹣4m﹣5,
∴F(m,m2﹣4m﹣5),
∴PF=(m﹣5)﹣(m2﹣4m﹣5)=﹣m2+5m,
∵E(2,﹣3),D(2,﹣9),
∴DE=﹣3﹣(﹣9)=6,
如圖,連接DF,
∵PF∥DE,
∴當(dāng)PF=DE時(shí),四邊形PEDF為平行四邊形,
即﹣m2+5m=6,
解得m1=3,m2=2(舍去),
當(dāng)m=3時(shí),y=3﹣5=2,
此時(shí)P(3,﹣2),
∴存在點(diǎn)P(3,﹣2)使四邊形PEDF為平行四邊形;
②由題意,在Rt△BOC中,OB=OC=5,
∴BC=5,
∴C△BOC =10+5,
∵PF∥DE∥y軸,
∴∠FPE=∠DEC=∠OCB,
∵FH⊥BC,
∴∠FHP=∠BOC=90°,
∴△PFH∽△BCO,
∴,
即C△PFH=,
∵0<m<5,
∴當(dāng)m=﹣時(shí),△PFH周長(zhǎng)的最大值為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】冬季降至,貧困山區(qū)惡劣的地理環(huán)境加之其落后的交通條件,無(wú)疑將使得山區(qū)在漫長(zhǎng)冬季里物資更加匱乏,“讓冬天不冷讓愛(ài)心永駐”,重慶市公益組織心驛家號(hào)召全市人民為貧困山區(qū)的孩子們捐贈(zèng)過(guò)冬衣物,本次捐贈(zèng)共收集了11600件棉衣、7500件羽絨服及防寒服若干,自愿者將所有衣物分成若干A、B、C類(lèi)組合,由自愿者們分別送往交通極其不便利的各個(gè)山區(qū),一個(gè)A類(lèi)組合含有60件棉衣,80件防寒服和50件羽絨服;一個(gè)B類(lèi)組合含有40件棉衣,40件防寒服;一個(gè)C類(lèi)組合含有40件棉衣,60件防寒服,50件羽絨服;求防寒服一共捐贈(zèng)了_____件.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某區(qū)進(jìn)行課堂教學(xué)改革,將學(xué)生分成5個(gè)學(xué)習(xí)小組,采取團(tuán)團(tuán)坐的方式.如圖所示,這是某校八(1)班教室簡(jiǎn)圖,點(diǎn)、、、、分別代表五個(gè)學(xué)習(xí)小組的位置.已知點(diǎn)的坐標(biāo)為(-1,3).
(1)請(qǐng)按題意建立平面直角坐標(biāo)系(橫軸和縱軸均為小正方形的邊所在直線,每個(gè)小正方形邊長(zhǎng)為1個(gè)單位長(zhǎng)度),寫(xiě)出圖中其他幾個(gè)學(xué)習(xí)小組的坐標(biāo);
(2)若(1)中建立的平面直角坐標(biāo)系坐標(biāo)原點(diǎn)為,點(diǎn)在的延長(zhǎng)線上,請(qǐng)寫(xiě)出、、之間的等量關(guān)系,并說(shuō)明原因.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】為了保障人畜飲水安全,某縣急需飲水設(shè)備12臺(tái),現(xiàn)有甲、乙兩種設(shè)備可供選擇,已知購(gòu)買(mǎi)1臺(tái)甲種設(shè)備和2臺(tái)乙兩種設(shè)備共需10000元,購(gòu)買(mǎi)3臺(tái)甲種設(shè)備和1臺(tái)乙兩種設(shè)備共需15000元,且甲種設(shè)備的安裝及運(yùn)輸費(fèi)用為600元/臺(tái),乙種設(shè)備的安裝及運(yùn)輸費(fèi)用為800元/臺(tái).
(1)購(gòu)買(mǎi)1臺(tái)甲、乙兩種設(shè)備各需多少元?
(2)若購(gòu)買(mǎi)的費(fèi)用不超過(guò)40000元,安裝及運(yùn)輸費(fèi)用不超過(guò)9200元,則有幾種購(gòu)買(mǎi)方案?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,△ABC的∠ABC和∠ACB的平分線BE,CF相交于點(diǎn)G.求證:
⑴∠BGC=180°-(∠ABC+∠ACB)
⑵∠BGC=90°+∠A
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在一元二次方程中,若系數(shù)和可在0,1,2,3中取值,則其中有實(shí)數(shù)解的方程的個(gè)數(shù)是___ 個(gè),寫(xiě)出其中有兩個(gè)相等實(shí)數(shù)根的一元二次方程_________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某商場(chǎng)舉行開(kāi)業(yè)酬賓活動(dòng),設(shè)立了兩個(gè)可以自由轉(zhuǎn)動(dòng)的轉(zhuǎn)盤(pán)(如圖所示,兩個(gè)轉(zhuǎn)盤(pán)均被等分),并規(guī)定:顧客購(gòu)買(mǎi)滿188元的商品,即可任選一個(gè)轉(zhuǎn)盤(pán)轉(zhuǎn)動(dòng)一次,轉(zhuǎn)盤(pán)停止后,指針?biāo)竻^(qū)域內(nèi)容即為優(yōu)惠方式;若指針?biāo)竻^(qū)域空白,則無(wú)優(yōu)惠.已知小張?jiān)谠撋虉?chǎng)消費(fèi)300元
(1)若他選擇轉(zhuǎn)動(dòng)轉(zhuǎn)盤(pán)1,則他能得到優(yōu)惠的概率為多少?
(2)選擇轉(zhuǎn)動(dòng)轉(zhuǎn)盤(pán)1和轉(zhuǎn)盤(pán)2,哪種方式對(duì)于小張更合算,請(qǐng)通過(guò)計(jì)算加以說(shuō)明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】規(guī)定兩數(shù)之間的一種運(yùn)算,記作();如果,那么(),例如因?yàn)?/span>,所以(2,8)=3.
(1)根據(jù)上述規(guī)定,填空:(4,16)= ,(7,1)= ,( ,81)=4.
(2)小明在研究這種運(yùn)算時(shí)發(fā)現(xiàn)一個(gè)現(xiàn)象,(,)=(3,4),小明給出了如下的證明:
設(shè)(,),所以,即,所以,
即(3,4),所以(,)=(3,4),請(qǐng)你嘗試運(yùn)用這種方法解決下列問(wèn)題:
①證明:(6,45)-(6,9)=(6,5)
②猜想:(,)+(,)=( , )(結(jié)果化成最簡(jiǎn)形式)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com