【題目】如圖,直線L:與軸、軸分別交于兩點,在y軸上有一點,動點M從A點出發(fā)以每秒1個單位的速度沿射線AO勻速運動.
(1)點A的坐標: ;點B的坐標: ;
(2)求△NOM的面積S與M的移動時間t之間的函數(shù)關(guān)系式;
(3)當為何值時,,求出此時點M的坐標;
【答案】(1)(8,0),(0,6);(2)①當點M在y軸右側(cè)時,OM=OA-AM=8-t, (0≤t<8);②當點M在y軸左側(cè)時,OM=AM-OA=t-8; (t>8);(3)當t=5或11時,,此時點M的坐標分別為(3,0),(-3,0).
【解析】
(1)在中,分別令y=0和x=0,則可求得A、B的坐標;
(2)利用t可表示出OM,則可表示出S,注意分M在y軸右側(cè)和左側(cè)兩種情況;
(3)由,建立關(guān)于時間t一元一次方程算出t值,即可得到M點坐標.
解:(1)依題意,令x=0,則有y=6,令y=0,則有x=8,故點A的坐標為(8,0),點B的坐標為(0,6);
(2)依題意,AM=t,
①當點M在y軸右側(cè)時,OM=OA-AM=8-t; (0≤t<8)
②當點M在y軸左側(cè)時,OM=AM-OA=t-8. (t>8)
(3)∵ON=8,;
,
①當點M在y軸右側(cè)時,,解得t=5;此時M的坐標為(3,0).
②當點M在y軸左側(cè)時,,解得t=11,此時M的坐標為(-3,0)
綜上:當t=5或11時,,此時點M的坐標分別為(3,0),(-3,0).
科目:初中數(shù)學 來源: 題型:
【題目】如圖,小華站在河岸上的G點,看見河里有一小船沿垂直于岸邊的方向劃過來.此時測得小船C的俯角是∠FDC=30°.若小華的眼睛與地面的距離是米,BG=1.5米,BG平行于AC所在的直線,迎水坡i=4:3,坡長AB=10米,點A、B、C、D、F、G在同一平面內(nèi),則此時小船C到岸邊的距離CA的長是多少?(結(jié)果保留根號)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,某辦公樓AB的后面有一建筑物CD,當光線與地面的夾角是22°時,辦公樓在建筑物的墻上留下高3米的影子CE,而當光線與地面夾角是45°時,辦公樓頂A在地面上的影子F與墻角C有27米的距離(B,F,C在一條直線上).
(1)求辦公樓AB的高度;
(2)若要在A,E之間掛一些彩旗,請你求出A,E之間的距離.
(參考數(shù)據(jù):sin22°≈,cos22°≈,tan22°≈)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某社區(qū)活動中心為中老年舞蹈隊統(tǒng)一隊服和道具,準備購買 10 套某種品牌的舞蹈鞋,每雙舞蹈鞋配 x(x≥2)個舞蹈扇,供舞蹈隊隊員使用.該社區(qū)附近 A,B 兩家超市都有這種品牌的舞蹈鞋和舞蹈扇出售,且每雙舞蹈鞋的標價均為 30 元,每個舞蹈扇的標價為 3 元,目前兩家超市同時在做促銷活動:
A 超市:所有商品均打九折(按標價的 90%)銷售;
B 超市:買一雙舞蹈鞋送 2 個舞蹈扇.
設(shè)在 A 超市購買舞蹈鞋和舞蹈扇的費用為(元),在 B 超市購買舞蹈鞋和舞蹈扇的費用為 (元).請解答下列問題:
(1)分別寫出 , 與 x 之間的關(guān)系式;
(2)若該活動中心只在一家超市購買,你認為在哪家超市購買更劃算?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某工廠加工一批零件,為了提高工人工作積極性,工廠規(guī)定每名工人每天薪金如下:生產(chǎn)的零件不超過a件,則每件3元,超過a件,超過部分每件b元,如圖是一名工人一天獲得薪金y(元)與其生產(chǎn)的件數(shù)x(件)之間的函數(shù)關(guān)系式,則下列結(jié)論錯誤的( )
A.a=20
B.b=4
C.若工人甲一天獲得薪金180元,則他共生產(chǎn)45件.
D.人乙一天生產(chǎn)40(件),則他獲得薪金140元
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖①,M是鐵絲AD的中點,將該鐵絲首尾相接折成△ABC(如圖②),且∠B=30°,∠C=100°,則下列說法正確的是( )
A. 點M在AB上B. 點M在BC上,且距點B較近,距點C較遠
C. 點M在BC的中點處D. 點M在BC上,且距點C較近,距點B較遠
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,AB=AC,AD是△ABC的平分線,DE⊥AB,DF⊥AC,垂足分別是E,F(xiàn).則下面結(jié)論中①DA平分∠EDF;②AE=AF,DE=DF;③AD上的點到B、C兩點距離相等;④圖中共有3對全等三角形,正確的有:________.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,PA,PB分別與⊙O相切于點A,B,點M在PB上,且OM∥AP,MN⊥AP,垂足為N.
(1)求證:OM = AN;
(2)若⊙O的半徑R = 3,PA = 9,求OM的長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com