【題目】如圖,一次函數(shù)y1=k1x+2與反比例函數(shù) 的圖象交于點A(4,m)和B(﹣8,﹣2),與y軸交于點C.

(1)k1= , k2=;
(2)根據(jù)函數(shù)圖象可知,當y1>y2時,x的取值范圍是
(3)過點A作AD⊥x軸于點D,點P是反比例函數(shù)在第一象限的圖象上一點.設直線OP與線段AD交于點E,當S四邊形ODAC:SODE=3:1時,求點P的坐標.

【答案】
(1);16
(2)﹣8<x<0或x>4
(3)

解:由(1)知,

∴m=4,點C的坐標是(0,2)點A的坐標是(4,4).

∴CO=2,AD=OD=4.

∵S梯形ODAC:SODE=3:1,∴SODE= S梯形ODAC= ×12=4,

ODDE=4,

∴DE=2.

∴點E的坐標為(4,2).

又點E在直線OP上,

∴直線OP的解析式是

∴直線OP與 的圖象在第一象限內的交點P的坐標為( ).

故答案為: ,16,﹣8<x<0或x>4


【解析】解:(1)∵一次函數(shù)y1=k1x+2與反比例函數(shù) 的圖象交于點A(4,m)和B(﹣8,﹣2),
∴K2=(﹣8)×(﹣2)=16,
﹣2=﹣8k1+2
∴k1=
2)∵一次函數(shù)y1=k1x+2與反比例函數(shù) 的圖象交于點A(4,4)和B(﹣8,﹣2),
∴當y1>y2時,x的取值范圍是
﹣8<x<0或x>4;
【考點精析】認真審題,首先需要了解一次函數(shù)的圖象和性質(一次函數(shù)是直線,圖像經(jīng)過仨象限;正比例函數(shù)更簡單,經(jīng)過原點一直線;兩個系數(shù)k與b,作用之大莫小看,k是斜率定夾角,b與Y軸來相見,k為正來右上斜,x增減y增減;k為負來左下展,變化規(guī)律正相反;k的絕對值越大,線離橫軸就越遠),還要掌握反比例函數(shù)的圖象(反比例函數(shù)的圖像屬于雙曲線.反比例函數(shù)的圖象既是軸對稱圖形又是中心對稱圖形.有兩條對稱軸:直線y=x和 y=-x.對稱中心是:原點)的相關知識才是答題的關鍵.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】右圖為手的示意圖,在各個手指間標記字母A、B、CD.請你按圖中箭頭所指方向(即ABCDCBABC…的方式)從A開始數(shù)連續(xù)的正整數(shù)1,23,4…,當數(shù)到12時,對應的字母是 ;當字母C201次出現(xiàn)時,恰好數(shù)到的數(shù)是 ;當字母C2n+1次出現(xiàn)時(n為正整數(shù)),恰好數(shù)到的數(shù)是 (用含n的代數(shù)式表示).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】類比、轉化、從特殊到一般等思想方法,在數(shù)學學習和研究中經(jīng)常用到,如下是一個案例,請補充完整. 原題:如圖1,在平行四邊形ABCD中,點E是BC的中點,點F是線段AE上一點,BF的延長線交射線CD于點G.若 =3,求 的值.

(1)嘗試探究 在圖1中,過點E作EH∥AB交BG于點H,則AB和EH的數(shù)量關系是 , CG和EH的數(shù)量關系是 的值是
(2)類比延伸 如圖2,在原題的條件下,若 =m(m>0),求 的值(用含有m的代數(shù)式表示),試寫出解答過程.
(3)拓展遷移 如圖3,梯形ABCD中,DC∥AB,點E是BC的延長線上的一點,AE和BD相交于點F.若 =a, =b,(a>0,b>0),則 的值是(用含a、b的代數(shù)式表示).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖是一個幾何體的三視圖,根據(jù)圖示的數(shù)據(jù)可計算出該幾何體的表面積為

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知:點P內一點.

求證:;

PB平分,PC平分,,求的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,ABCD的對角線ACBD相交于O,EF經(jīng)過點O,分別交AD,BCEF,已知ABCD的面積是,則圖中陰影部分的面積是  

A. 12 B. 10 C. D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】完成下面的解題過程,并在括號內填上依據(jù).如圖,EFAD,1=2,BAC=85°.求∠AGD的度數(shù)

解: EFAD,

∴∠2=____( )

又∵∠1=2

∴∠1=3

____( )

∴∠BAC+____=180°

∵∠BAC=85°

∴∠AGD=950

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在平面直角坐標系xOy中,對于與坐標軸不平行的直線l和點P,給出如下定義:過點Px軸,y軸的垂線,分別交直線l于點MN,若PM+PN≤4,則稱P為直線l的近距點,特別地,直線上l所有的點都是直線l的近距點.已知點A(-,0),B(0,2),C(-2,2).

(1)當直線l的表達式為y=x時,

①在點A,B,C中,直線l的近距點是 ;

②若以OA為邊的矩形OAEF上所有的點都是直線l的近距點,求點E的縱坐標n的取值范圍;

(2)當直線l的表達式為y=kx時,若點C是直線l的近距點,直接寫出k的取值范圍

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】對于一次函數(shù)y=kx+b,當自變量x的取值為﹣2≤x≤5時,相應的函數(shù)值的范圍為﹣6≤y≤﹣3,則該函數(shù)的解析式為

查看答案和解析>>

同步練習冊答案