【題目】如圖,已知△ABC的三個頂點的坐標分別為A(﹣6,0)、B(﹣2,3)、
C(﹣1,0).

(1)請直接寫出與點B關于坐標原點O的對稱點B1的坐標;
(2)將△ABC繞坐標原點O逆時針旋轉(zhuǎn)90°.畫出對應的△A′B′C′圖形,直接寫出點A的對應點A′的坐標;
(3)若四邊形A′B′C′D′為平行四邊形,請直接寫出第四個頂點D′的坐標.

【答案】
(1)解:B1(2,﹣3)
(2)解:△A′B′C′如圖所示,A′(0,﹣6)


(3)解:D′(3,﹣5)
【解析】(1)根據(jù)關于原點對稱的點的橫坐標與縱坐標都互為相反數(shù)解答;(2)根據(jù)網(wǎng)格結(jié)構(gòu)找出點A、B、C關于原點對稱的點A′、B′、C′的坐標,然后順次連接即可,再根據(jù)平面直角坐標系寫出點A′的坐標;(3)根據(jù)平行四邊形的對邊平行且相等解答.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】甲、乙兩地距離300km,一輛貨車和一輛轎車先后從甲地出發(fā)駛向乙地.如圖,線段OA表示貨車離甲地的距離y(km)與時間x(h)之間的函數(shù)關系,折線BCDE表示轎車離甲地的距離y(km)與時間x(h)之間的函數(shù)關系,根據(jù)圖象,解答下列問題:
(1)線段CD表示轎車在途中停留了h;
(2)求線段DE對應的函數(shù)解析式;
(3)求轎車從甲地出發(fā)后經(jīng)過多長時間追上貨車.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在平面直角坐標系xOy中,已知點P(3,0),⊙P是以點P為圓心,2為半徑的圓,若一次函數(shù)y=kx+b的圖象過點A(﹣1,0)且與⊙P相切,則k+b的值為

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖(1),在矩形ABCD中,把∠B、∠D分別翻折,使點B、D恰好落在對角線AC上的點E、F處,折痕分別為CM、AN,
(1)求證:△ADN≌△CBM;
(2)請連接MF、NE,證明四邊形MFNE是平行四邊形;四邊形MFNE是菱形嗎?請說明理由;
(3)點P、Q是矩形的邊CD、AB上的兩點,連接PQ、CQ、MN,如圖(2)所示,若PQ=CQ,PQ∥MN,且AB=4cm,BC=3cm,求PC的長度.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在同一直角坐標系中,函數(shù)y=mx+m和y=﹣mx2+2x+2(m是常數(shù),且m≠0)的圖象可能是(
A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某地區(qū)的手機收費如下兩種方式(接聽均免費),用戶可任選其一:

A:月租費0元,撥打電話計費0.15/

B:月租費15元,撥打電話計費0.1/

1)某用戶某月打手機100分鐘,請計算兩種方式各繳費多少元?

2)某用戶某月打手機x分鐘,請你寫出兩種方式下該用戶應繳付的費用?

3)若某用戶估計一個月內(nèi)打手機15小時,你認為哪種方式更合算?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,小強和小華共同站在路燈下,小強的身高EF=1.8m,小華的身高MN=1.5m,他們的影子恰巧等于自己的身高,即BF=1.8m,CN=1.5m,且兩人相距4.7m,則路燈AD的高度是

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某學校是乒乓球體育傳統(tǒng)項目學校,為進一步推動該項目的開展,學校準備到體育用品店購買直拍球拍和橫拍球拍若干副,并且每買一副球拍必須要買10個乒乓球,乒乓球的單價為2元/個,若購買20副直拍球拍和15副橫拍球拍花費9000元;購買10副橫拍球拍比購買5副直拍球拍多花費1600元.
(1)求兩種球拍每副各多少元?
(2)若學校購買兩種球拍共40副,且直拍球拍的數(shù)量不多于橫拍球拍數(shù)量的3倍,請你給出一種費用最少的方案,并求出該方案所需費用.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知Rt△AEC中,∠E=90°,請按如下要求進行操作和判斷:

(1)尺規(guī)作圖:作△AEC的外接圓⊙O,并標出圓心O(不寫畫法);
(2)延長CE,在CE的延長線上取點B,使EB=EC,連結(jié)AB,設AB與⊙O的交點為D(標出字母B、D),判斷:圖中 相等嗎?請說明理由.

查看答案和解析>>

同步練習冊答案