【題目】如圖,AC是某市壞城路的一段,AE、BF、CD都是南北方向的街道,其與環(huán)城路AC的交叉口分別是A、B、C經(jīng)測量花卉世界D位于點A的北偏東45°方向,點B的北偏東30°方向上,AB=2km,∠DAC=15°.
(1)求∠ADB的大小;
(2)求B、D之間的距離;
(3)求C、D之間的距離.
【答案】解:(1)∵∠EAB=∠EAD+∠DAC=45°+15°=60°,
又∵AE∥BF,
∴∠ABF=180°-∠EAB=120°,
∴∠ABD=∠ABF+∠FBD=120°+30°=150°,
∴∠ADB=180°-∠DAC-∠ABD=180°-15°-150°=15°;
(2)由(1)可知∠ADB=15°,
∵∠DAC=15°,
∴∠DAC=∠ADB=15°,
∴BD=AB=2km.
即B,D之間的距離是2km;
(3)過B作BO⊥DC,交DC的延長線于點O,
在Rt△DBO中,BD=2km,
∵∠FBD=30°,
∴∠DBO=60°,
∴DO=2×sin60°=(km),BO=2×cos60°=1,
在Rt△CBO中,
∵∠BCO=∠EAC=60°,
∴∠CBO=30°,CO=BO×tan30°=,
∴CD=DO-CO=-=(km).
即C,D之間的距離km.
【解析】(1)根據(jù)平行線的性質,以及方向角的定義即可求解;
(2)根據(jù)等角對等邊,即可證得BD=AB即可求解;
(3)根據(jù)等角對等邊即可證得BC=CD,然后根據(jù)三角函數(shù)即可求得CD的長.
【考點精析】利用關于方向角問題對題目進行判斷即可得到答案,需要熟知指北或指南方向線與目標方向 線所成的小于90°的水平角,叫做方向角.
科目:初中數(shù)學 來源: 題型:
【題目】某“愛心義賣”活動中,購進甲、乙兩種文具,甲每個進貨價高于乙進貨價10元,90元買乙的數(shù)量與150元買甲的數(shù)量相同.
(1)求甲、乙進貨價;
(2)甲、乙共100件,將進價提高20%進行銷售,進貨價少于2080元,銷售額要大于2460元,求有幾種方案?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在課題學習后,同學們?yōu)榻淌掖皯粼O計一個遮陽蓬,小明同學繪制的設計圖如圖所示,其中,AB表示窗戶,且AB=2.82米,△BCD表示直角遮陽蓬,已知當?shù)匾荒曛性谖鐣r的太陽光與水平線CD的最小夾角α為18°,最大夾角β為66°,根據(jù)以上數(shù)據(jù),計算出遮陽蓬中CD的長是(結果精確到0.1)(參考數(shù)據(jù):sin18°≈0.31,tan18°≈0.32,sin66°≈0.91,tan66°≈2.2)( 。
A.1.2米
B.1.5米
C.1.9米
D.2.5米
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】觀光塔是濰坊市區(qū)的標志性建筑,為測量其高度,如圖,一人先在附近一樓房的底端A點處觀測觀光塔頂端C處的仰角是60°,然后爬到該樓房頂端B點處觀測觀光塔底部D處的俯角是30° . 已知樓房高AB約是45m , 根據(jù)以上觀測數(shù)據(jù)可求觀光塔的高CD是m .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,F(xiàn)在BD上,BC、AD相交于點E,且AB∥CD∥EF,
(1)圖中有哪幾對位似三角形,選其中一對加以證明;
(2)若AB=2,CD=3,求EF的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,小明同學用自制的直角三角形紙板DEF測量樹的高度AB,他調整自己的位置,設法使斜邊DF保持水平,并且邊DE與點B在同一直線上.已知紙板的兩條直角邊DE=0.4m,EF=0.2cm,測得邊DF離地面的高度AC=1.5m,CD=8m,求樹高.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,△ABD與△AEC都是等邊三角形,AB≠AC.下列結論中,正確的是 .
①BE=CD;②∠BOD=60°;③△BOD∽△COE.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在菱形ABCD中,∠ABC=60°,AB=2,點P是這個菱形內部或邊上的一點,若以點P、B、C為頂點的三角形是等腰三角形,則P、D(P、D兩點不重合)兩點間的最短距離為 .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com