已知坐標(biāo)平面上的線段AB及點(diǎn)P,任取AB上一點(diǎn)Q,線段PQ長度的最小值稱為點(diǎn)P到線段AB的距離,記作d(P→AB).
(1)如圖所示,已知長度為2個(gè)單位的線段MN在x軸上,M點(diǎn)的坐標(biāo)為(1,0),求點(diǎn)P(1,1)到線段MN的距離d(P→MN);
(2)已知坐標(biāo)平面上點(diǎn)G到線段DE:y=x(0≤x≤3)的距離d(G→DE)=,且點(diǎn)G的橫坐標(biāo)為1,試求點(diǎn)G的縱坐標(biāo).

【答案】分析:(1)由M點(diǎn)的坐標(biāo)為(1,0),點(diǎn)P的坐標(biāo)為(1,1),根據(jù)定義可得PM就是點(diǎn)P到線段MN的距離.
(2)首先可得點(diǎn)G在直線x=1上,設(shè)直線x=1交x軸于點(diǎn)H,交DE于點(diǎn)K.然后分別從①如圖,過點(diǎn)G1作G1F⊥DE于點(diǎn)F,②如圖,過點(diǎn)O作G2O⊥OE交直線x=1于點(diǎn)G2,去分析求解即可求得答案.
解答:解:(1)∵M(jìn)點(diǎn)的坐標(biāo)為(1,0),點(diǎn)P的坐標(biāo)為(1,1),
根據(jù)定義可得PM就是點(diǎn)P到線段MN的距離.
∴d(P→MN)=1.

(2)在坐標(biāo)平面內(nèi)作出線段DE:y=x(0≤x≤3),
∵點(diǎn)G的橫坐標(biāo)為1,
∴點(diǎn)G在直線x=1上,設(shè)直線x=1交x軸于點(diǎn)H,交DE于點(diǎn)K.
①如圖,過點(diǎn)G1作G1F⊥DE于點(diǎn)F,則G1F就是點(diǎn)G1到線段DE的距離.
∵線段DE:y=x(0≤x≤3),
∴△G1FK,△DHK均為等腰直角三角形,
∵d(G1→DE)=,
∴KF=,由勾股定理得GK=2,
又∵KH=OH=1,
∴HG1=3.
即G1的縱坐標(biāo)為3;
②如圖,過點(diǎn)O作G2O⊥OE交直線x=1于點(diǎn)G2,由題意知△OHG2為等腰直角三角形,
∵OH=1,
∴G2O=
∴點(diǎn)G2同樣是滿足條件的點(diǎn).
∴點(diǎn)G2的縱坐標(biāo)為-1.
綜上,點(diǎn)G2的縱坐標(biāo)為3或-1.
點(diǎn)評:此題屬于一次函數(shù)的綜合題,考查了點(diǎn)到直線的距離、等腰直角三角形的性質(zhì)、待定系數(shù)法求一次函數(shù)的解析式等知識.此題難度較大,注意掌握數(shù)形結(jié)合思想與分類討論思想的應(yīng)用.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

(2013•浙江一模)如圖,已知在平面直角坐標(biāo)系中,點(diǎn)A(4,0)、B(-3,0),點(diǎn)C在y軸正半軸上,且tan∠CAO=1,點(diǎn)Q是線段AB上的動點(diǎn),過點(diǎn)Q作QE∥AC交BC于點(diǎn)E.
(1)求點(diǎn)C的坐標(biāo)及直線BC的解析式;
(2)連結(jié)CQ,當(dāng)△CQE的面積最大時(shí),求點(diǎn)Q的坐標(biāo);
(3)若點(diǎn)P是線段AC上的點(diǎn),是否存在這樣的點(diǎn)P,使△PQE成為等腰直角三角形?若存在,試求出所有符合條件的點(diǎn)P的坐標(biāo);若不存在,說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知在平面直角坐標(biāo)系xoy中,直線y=-3x-3交x軸于點(diǎn)A,交y軸于點(diǎn)C,點(diǎn)B的坐標(biāo)為(3,0),拋物線y=ax2+bx+c經(jīng)過A、B、C三點(diǎn).
(1)求拋物線的解析式.
(2)已知D(4,-1),在拋物線上是否存在點(diǎn)P,使得以線段PD為直徑的⊙O′經(jīng)過坐標(biāo)原點(diǎn)O?若點(diǎn)P存在,求出滿足條件的點(diǎn)P的坐標(biāo);若不存在,說明理由.
(3)已知正方形BEFG的頂點(diǎn)E在x軸上,除B點(diǎn)外,正方形BEFG還有一個(gè)頂點(diǎn)在拋物線上,請直接寫出E點(diǎn)所有可能的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•岱山縣模擬)已知坐標(biāo)平面上的線段AB及點(diǎn)P,任取AB上一點(diǎn)Q,線段PQ長度的最小值稱為點(diǎn)P到線段AB的距離,記作d(P→AB).
(1)如圖所示,已知長度為2個(gè)單位的線段MN在x軸上,M點(diǎn)的坐標(biāo)為(1,0),求點(diǎn)P(1,1)到線段MN的距離d(P→MN);
(2)已知坐標(biāo)平面上點(diǎn)G到線段DE:y=x(0≤x≤3)的距離d(G→DE)=
2
,且點(diǎn)G的橫坐標(biāo)為1,試求點(diǎn)G的縱坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

已知坐標(biāo)平面上的線段AB及點(diǎn)P,任取AB上一點(diǎn)Q,線段PQ長度的最小值稱為點(diǎn)P到線段AB的距離,記作d(P→AB).
(1)如圖所示,已知長度為2個(gè)單位的線段MN在x軸上,M點(diǎn)的坐標(biāo)為(1,0),求點(diǎn)P(1,1)到線段MN的距離d(P→MN);
(2)已知坐標(biāo)平面上點(diǎn)G到線段DE:y=x(0≤x≤3)的距離d(G→DE)=數(shù)學(xué)公式,且點(diǎn)G的橫坐標(biāo)為1,試求點(diǎn)G的縱坐標(biāo).

查看答案和解析>>

同步練習(xí)冊答案