【題目】如圖,△ABC中,AC=8,BC=10,AC>AB.
(1)用尺規(guī)作圖法在△ABC內(nèi)求作一點D,使點D到兩點A、C的距離相等,又到邊AC、BC的距離相等(保留作圖痕跡,不寫作法).
(2)若△ACD的周長為18,求△BCD的面積.
【答案】(1)見解析;(2).
【解析】
(1)分別作出∠ACB的角平分線和線段AC的垂直平分線,交點即為所求;(2)連接AD、BD,過點D作DF⊥BC于F,由垂直平分線的性質(zhì)可得AD=DC,CE=AC,根據(jù)找出可得出CD的長,利用勾股定理可求出DE的長,根據(jù)角平分線的性質(zhì)可得DF=DE,利用三角形面積公式即可得答案.
(1)如圖所示,D點為所作
(2)連接AD、BD,過點D作DF⊥BC于F
由(1)可知AD=DC,DE垂直平分AC,即CE=AC=4,
∵,AC=8
∴CD=5,
在RtΔDEC中,.
又∵CD是∠ACB的平分線,DE⊥AC,DF⊥BC
∴DF=DE=3,
∴,
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB為⊙O的直徑,射線AP交⊙O于C點,∠PCO的平分線交⊙O于D點,過點D作交AP于E點.
(1)求證:DE為⊙O的切線;
(2)若DE=3,AC=8,求直徑AB的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】雜技團(tuán)進(jìn)行雜技表演,演員從蹺蹺板右端A處彈跳到人梯頂端椅子B處,其身體(看成一點)的路線是拋物線的一部分,如圖
(1)求演員彈跳離地面的最大高度;
(2)已知人梯高BC=3.4米,在一次表演中,人梯到起跳點A的水平距離是4米,問這次表演是否成功?請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】關(guān)于x的一元二次方程x2-x-(m+1)=0有兩個不相等的實數(shù)根.
(1)求m的取值范圍;
(2)若m為符合條件的最小整數(shù),求此方程的根.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC中,AB=AC,∠BAC=90°,點D,E分別在AB,BC上,∠EAD=∠EDA,點F為DE的延長線與AC的延長線的交點.
(1)求證:DE=EF;
(2)判斷BD和CF的數(shù)量關(guān)系,并說明理由;
(3)若AB=3,AE=,求BD的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線交坐標(biāo)軸于A、B兩點,直線AC⊥AB交x軸于點C,拋物線恰好過點A、B、C.
(1)求拋物線的表達(dá)式.
(2)當(dāng)點M在線段AB上方的曲線上移動時,求四邊形AOBM的面積的最大值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知長方形中,,點在邊上,由往運(yùn)動,速度為,運(yùn)動時間為秒,將沿著翻折至,點對應(yīng)點為,所在直線與邊交與點,
(1)如圖,當(dāng)時,求證:;
(2)如圖,當(dāng)為何值時,點恰好落在邊上;
(3)如圖,當(dāng)時,求的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,矩形ABCD中,AB=4,AD=6,點E為AD中點,點P為線段AB上一個動點,連接EP,將△APE沿PE折疊得到△FPE,連接CE,CF,當(dāng)△ECF為直角三角形時,AP的長為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,點P,Q分別在BC,AC上,AQ=PQ,PR=PS,PR⊥AB于點R,PS⊥AC于點S,則下面結(jié)論錯誤是(。
A. △BPR≌△QPSB. AS=ARC. QP∥ABD. ∠BAP=∠CAP
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com