【題目】如圖,二次函數(shù)圖象的頂點(diǎn)為D,其圖象與x軸的交點(diǎn)AB的橫坐標(biāo)分別為,y軸負(fù)半軸交于點(diǎn)C

是等腰直角三角形,求a的值.

探究:是否存在a,使得是等腰三角形?若存在,求出符合條件的a的值;不存在,說明理由.

【答案】1;(2)存在,,見解析.

【解析】

于點(diǎn)E,根據(jù)是等腰直角三角形,即可求得D的坐標(biāo),利用待定系數(shù)法求得函數(shù)的解析式,從而求得a的值.

根據(jù)三邊分別相等可以分三種情況:

當(dāng)時(shí),根據(jù)勾股定理列方程:,可得a的值;

當(dāng)時(shí),根據(jù)勾股定理列方程:,可得a的值;

當(dāng)時(shí),由于,,不成立.

如圖,作于點(diǎn)E,

是等腰直角三角形,

,

D的坐標(biāo)是

設(shè)二次函數(shù)的解析式是,

代入得,

解得:

存在,分三種情況:

當(dāng)時(shí),

中,,

,

,

設(shè)二次函數(shù)的解析式為:

代入,

,

當(dāng)時(shí),

,

中,

,

,則,

,

,

當(dāng)時(shí),

AB的中點(diǎn),

,

,

不成立,

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】中,,為高線,點(diǎn)在邊上,且,連接,與邊相交于點(diǎn)

1)如圖1,當(dāng)時(shí),求證:

2)如圖2,當(dāng)時(shí),則線段的數(shù)量關(guān)系為 ;

3)如圖3,在(2)的條件下,將繞點(diǎn)順時(shí)針旋轉(zhuǎn),旋轉(zhuǎn)后邊所在的直線與邊相交于點(diǎn),邊所在的直線與邊相交于點(diǎn),與高線相交于點(diǎn),若,且,求線段H的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB是半圓O的直徑,點(diǎn)P(不與點(diǎn)A,B重合)為半圓上一點(diǎn),將圖形沿BP折疊,分別得到點(diǎn)AO的對(duì)應(yīng)點(diǎn)點(diǎn)A′,O′,過點(diǎn)ACAB,若AC與半圓O恰好相切,則∠ABP的大小為_____°.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,直線y=4x+4x軸,y軸分別交于A、B兩點(diǎn),以AB為邊在第一象限作正方形ABCD,點(diǎn)D在雙曲線y=(k≠0)上.將正方形沿y軸向下方平移m個(gè)單位長度后,點(diǎn)C恰好落在該雙曲線上,則m的值為__

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某文具店購進(jìn)一批紀(jì)念冊,每本進(jìn)價(jià)為20元,出于營銷考慮,要求每本紀(jì)念冊的售價(jià)不低于20元且不高于28元,在銷售過程中發(fā)現(xiàn)該紀(jì)念冊每周的銷售量y(本)與每本紀(jì)念冊的售價(jià)x(元)之間滿足一次函數(shù)關(guān)系:當(dāng)銷售單價(jià)為22元時(shí),銷售量為36本;當(dāng)銷售單價(jià)為24元時(shí),銷售量為32本.

(1)求出y與x的函數(shù)關(guān)系式;

(2)當(dāng)文具店每周銷售這種紀(jì)念冊獲得150元的利潤時(shí),每本紀(jì)念冊的銷售單價(jià)是多少元?

(3)設(shè)該文具店每周銷售這種紀(jì)念冊所獲得的利潤為w元,將該紀(jì)念冊銷售單價(jià)定為多少元時(shí),才能使文具店銷售該紀(jì)念冊所獲利潤最大?最大利潤是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】央視熱播節(jié)目朗讀者激發(fā)了學(xué)生的閱讀興趣.某校為滿足學(xué)生的閱讀需求,欲購進(jìn)一批學(xué)生喜歡的圖書,學(xué)校組織學(xué)生會(huì)成員隨機(jī)抽取部分學(xué)生進(jìn)行問卷調(diào)查,被調(diào)查學(xué)生須從文史類、社科類、小說類、生活類中選擇自己喜歡的一類,根據(jù)調(diào)查結(jié)果繪制了統(tǒng)計(jì)圖(未完成),請(qǐng)根據(jù)圖中信息,解答下列問題:

(1)此次共調(diào)查了   名學(xué)生;

(2)將條形統(tǒng)計(jì)圖補(bǔ)充完整;

(3)圖2小說類所在扇形的圓心角為   度;

(4)若該校共有學(xué)生2500人,估計(jì)該校喜歡社科類書籍的學(xué)生人數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】食品安全受到全社會(huì)的廣泛關(guān)注,濟(jì)南市某中學(xué)對(duì)部分學(xué)生就食品安全知識(shí)的了解程度,采用隨機(jī)抽樣調(diào)查的方式,并根據(jù)收集到的信息進(jìn)行統(tǒng)計(jì),繪制了下面兩份尚不完整的統(tǒng)計(jì)圖,請(qǐng)你根據(jù)統(tǒng)計(jì)圖中所提供的信息解答下列問題.

1)接受問卷調(diào)查的學(xué)生共有_____人,扇形統(tǒng)計(jì)圖中基本了解部分所對(duì)應(yīng)扇形的圓心角為_____.

2)請(qǐng)補(bǔ)全條形統(tǒng)計(jì)圖.

3)若該中學(xué)共有學(xué)生900人,請(qǐng)根據(jù)上述調(diào)查結(jié)果,估計(jì)該中學(xué)學(xué)生中對(duì)食品安全知識(shí)達(dá)到了解基本了解程度的總?cè)藬?shù).

4)若從對(duì)食品安全知識(shí)達(dá)到了解程度的2個(gè)女生和2個(gè)男生中隨機(jī)抽取2人參加食品安全知識(shí)競賽,請(qǐng)用樹狀圖或列表法求出恰好抽到1個(gè)男生和1個(gè)女生的概率.

【答案】16090°;(2)補(bǔ)圖見解析;(3300;(4

【解析】分析:(1)根據(jù)了解很少的人數(shù)除以了解很少的人數(shù)所占的百分百求出抽查的總?cè)藬?shù),再用“基本了解”所占的百分比乘以360°,即可求出“基本了解”部分所對(duì)應(yīng)扇形的圓心角的度數(shù);(2)用調(diào)查的總?cè)藬?shù)減去“基本了解”“了解很少”和“基本了解”的人數(shù),求出了解的人數(shù),從而補(bǔ)全統(tǒng)計(jì)圖;(3)用總?cè)藬?shù)乘以了解基本了解程度的人數(shù)所占的比例,即可求出達(dá)到“了解”和“基本了解”程度的總?cè)藬?shù);(4)根據(jù)題意列出表格,再根據(jù)概率公式即可得出答案.

詳解:(16090°.

2)補(bǔ)全的條形統(tǒng)計(jì)圖如圖所示.

3)對(duì)食品安全知識(shí)達(dá)到了解基本了解的學(xué)生所占比例為,由樣本估計(jì)總體,該中學(xué)學(xué)生中對(duì)食品安全知識(shí)達(dá)到了解基本了解程度的總?cè)藬?shù)為.

4)列表法如表所示,

男生女生

男生

男生

女生

女生

男生

男生男生

男生女生

男生女生

男生

男生男生

男生女生

男生女生

女生

男生女生

男生女生

女生女生

女生

男生女生

女生女生

所有等可能的情況一共12種,其中選中1個(gè)男生和1個(gè)女生的情況有8種,所以恰好選中1個(gè)男生和1個(gè)女生的概率是.

點(diǎn)睛:本題考查了條形統(tǒng)計(jì)圖、扇形統(tǒng)計(jì)圖以及用列表法或樹狀圖法求概率,根據(jù)題意求出總?cè)藬?shù)是解題的關(guān)鍵;注意運(yùn)用概率公式:概率=所求情況數(shù)與總情況數(shù)之比.

型】解答
結(jié)束】
24

【題目】為響應(yīng)國家全民閱讀的號(hào)召,某社區(qū)鼓勵(lì)居民到社區(qū)閱覽室借閱讀書,并統(tǒng)計(jì)每年的借閱人數(shù)和圖書借閱總量(單位:本),該閱覽室在2015年圖書借閱總量是7500本,2017年圖書借閱總量是10800.

1)求該社區(qū)的圖書借閱總量從2015年至2017年的年平均增長率.

2)已知2017年該社區(qū)居民借閱圖書人數(shù)有1350人,預(yù)計(jì)2018年達(dá)到1440人,如果2017年至2018年圖書借閱總量的增長率不低于2015年至2017年的年平均增長率,設(shè)2018年的人均借閱量比2017年增長a%,求a的值至少是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在以點(diǎn)O為圓心的半圓中,AB為直徑,且AB=4,將該半圓折疊,使點(diǎn)A和點(diǎn)B落在點(diǎn)O處,折痕分別為ECFD,則圖中陰影部分面積為( 。

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,矩形ABCD的對(duì)角線AC的中點(diǎn)為O,過點(diǎn)O,交BC邊于點(diǎn)E,交AD邊于點(diǎn)F,分別連接AE、CF

1)求證:四邊形AECF是菱形;

2)若,,請(qǐng)直接寫出EF的長為__________.

查看答案和解析>>

同步練習(xí)冊答案