解:(1)∵①拋物線y=x
2+2x-1=(x+1)
2-2的頂點(diǎn)坐標(biāo)為M(-1,-2),
∴②當(dāng)x=-1時(shí),y=-x
2+2x+1=-1-2+1=-2,
∴點(diǎn)M在拋物線②上;
∵③當(dāng)x=-1時(shí),y=x
2+2x+1=1-2+1=0,
∴點(diǎn)M不在拋物線③上;
∴拋物線①與拋物線②有關(guān)聯(lián);
∵拋物線②y=-x
2+2x+1=-(x-1)
2+2,其頂點(diǎn)坐標(biāo)為(1,2),
經(jīng)驗(yàn)算:(1,2)在拋物線①上,
∴拋物線①、②是關(guān)聯(lián)的;
(2)拋物線C
1:y=
(x+1)
2-2的頂點(diǎn)M的坐標(biāo)為(-1,-2),
∵動(dòng)點(diǎn)P的坐標(biāo)為(t,2),
∴點(diǎn)P在直線y=2上,
作M關(guān)于P的對(duì)稱點(diǎn)N,分別過點(diǎn)M、N作直線y=2的垂線,垂足為E,F(xiàn),則ME=NF=4,
∴點(diǎn)N的縱坐標(biāo)為6,
當(dāng)y=6時(shí),
(x+1)
2-2=6,
解得:x
1=7,x
2=-9,
①設(shè)拋物C
2的解析式為:y=a(x-7)
2+6,
∵點(diǎn)M(-1,-2)在拋物線C
2上,
∴-2=a(-1-7)
2+6,
∴a=-
.
∴拋物線C
2的解析式為:y=-
(x-7)
2+6;
②設(shè)拋物C
2的解析式為:y=a(x+9)
2+6,
∵點(diǎn)M(-1,-2)在拋物線C
2上,
∴-2=a(-1+9)
2+6,
∴a=-
.
∴拋物線C
2的解析式為:y=-
(x+9)
2+6;
(3)點(diǎn)C在y軸上的一動(dòng)點(diǎn),以AC為腰作等腰直角△ABC,令C的坐標(biāo)為(0,c),則點(diǎn)B的坐標(biāo)分兩類:
①當(dāng)A,B,C逆時(shí)針分布時(shí),如圖中B點(diǎn),過點(diǎn)A,B作y軸的垂線,垂足分別為H,F(xiàn),則△BCF≌△CAH,
∴CF=AH=1,BF=CH=c+2,點(diǎn)B的坐標(biāo)為(c+2,c-1),
當(dāng)點(diǎn)B在拋物線C
1:y=
(x+1)
2-2上時(shí),c-1=
(c+2+1)
2-2,
解得:c=1.
②當(dāng)A,B,C順時(shí)針分布時(shí),如圖中B′點(diǎn),過點(diǎn)B′作y軸的垂線,垂足為D,
同理可得:點(diǎn)B′的坐標(biāo)為(-c-2,c+1),
當(dāng)點(diǎn)B′在拋物線C
1:y=
(x+1)
2-2上時(shí),c+1=
(-c-2+1)
2-2,
解得:c=3+4
或c=3-4
.
綜上所述,存在三個(gè)符合條件的等腰直角三角形,其中C點(diǎn)的坐標(biāo)分別為:C
1(0,1),C
2(0,3+4
),C
3(0,3-4
).
分析:(1)首先求得拋物線①的頂點(diǎn)坐標(biāo),然后檢驗(yàn)是否此點(diǎn)在拋物線②與③上,再求得拋物線②的頂點(diǎn)坐標(biāo),檢驗(yàn)是否在拋物線①上即可求得答案;
(2)首先求得拋物線C
1的頂點(diǎn)坐標(biāo),則可得:點(diǎn)P在直線y=2上,則可作輔助線:作M關(guān)于P的對(duì)稱點(diǎn)N,分別過點(diǎn)M、N作直線y=2的垂線,垂足為E,F(xiàn),則可求得:點(diǎn)N的坐標(biāo),利用頂點(diǎn)式即可求得結(jié)果;
(3)分別從當(dāng)A,B,C逆時(shí)針分布時(shí)與當(dāng)A,B,C順時(shí)針分布時(shí)分析,根據(jù)全等三角形的知識(shí),即可求得點(diǎn)C的坐標(biāo),注意別漏解.
點(diǎn)評(píng):此題考查了待定系數(shù)法求二次函數(shù)的解析式以及二次函數(shù)的頂點(diǎn)坐標(biāo)的求解方法,全等三角形的性質(zhì)等知識(shí).此題綜合性很強(qiáng),難度較大,注意數(shù)形結(jié)合思想與分類討論思想的應(yīng)用.