【題目】在平面直角坐標(biāo)系中,△ABC的位置如圖所示.(每個(gè)小方格都是邊長(zhǎng)為1個(gè)單位長(zhǎng)度的正方形)

(1)畫出△ABC關(guān)于原點(diǎn)對(duì)稱的△A'B'C';

(2)將△A'B'C'繞點(diǎn)C'順時(shí)針旋轉(zhuǎn)90°,畫出旋轉(zhuǎn)后得到的△ABC″,并直接寫出此過(guò)程中線段C'A'掃過(guò)圖形的面積.(結(jié)果保留π)

【答案】(1)詳見解析;(2)圖詳見解析,π.

【解析】

(1)分別作出點(diǎn)A,B,C關(guān)于原點(diǎn)的對(duì)稱點(diǎn),再首尾順次連接即可得;

(2)將點(diǎn)A′,B′分別繞點(diǎn)C'順時(shí)針旋轉(zhuǎn)90°得到對(duì)應(yīng)點(diǎn),再與點(diǎn)C′首尾順次連接即可得,求出C'A'的長(zhǎng),再根據(jù)扇形面積公式進(jìn)行計(jì)算即可.

(1)如圖所示,A'B'C'即為所求;

(2)如圖所示,ABC即為所求,

AC′=,∠ACA″=90°,

線段C'A'掃過(guò)圖形的面積=.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,等腰RtABCACB=90°)的直角邊與正方形DEFG的邊長(zhǎng)均為2,且ACDE在同一直線上,開始時(shí)點(diǎn)C與點(diǎn)D重合,讓ABC沿這條直線向右平移,直到點(diǎn)A與點(diǎn)E重合為止.設(shè)CD的長(zhǎng)為x,ABC與正方形DEFG重合部分(圖中陰影部分)的面積為y,則yx之間的函數(shù)關(guān)系的圖象大致是( 。

A. B.

C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,直徑為 10cm 的⊙O 中,兩條弦 AB,CD 分別位于圓心的異側(cè),ABCD,且,若 AB=8cm,則 CD 的長(zhǎng)為_____cm

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知,二次函數(shù) y=(x+2)2 的圖象與 x 軸交于點(diǎn) A,與 y 軸交于點(diǎn) B

(1)求點(diǎn) A、點(diǎn) B 的坐標(biāo);

(2)求 SAOB;

(3)求對(duì)稱軸方程;

(4)在對(duì)稱軸上是否存在一點(diǎn)P,使以 P,AO,B 為頂點(diǎn)的四邊形為平行四邊形?若存在,求P點(diǎn)坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,已知直線y=﹣x+m與反比例函數(shù)y=的圖象在第一象限內(nèi)交于A、B兩點(diǎn)(點(diǎn)A在點(diǎn)B的左側(cè)),分別與x、y軸交于點(diǎn)C、D,AEx軸于E.

(1)若OECE=12,求k的值.

(2)如圖2,作BFy軸于F,求證:EFCD.

(3)在(1)(2)的條件下,EF=, AB=2,Px軸正半軸上的一點(diǎn),且PAB是以P為直角頂點(diǎn)的等腰直角三角形,求P點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,四邊形ABCD中,AC平分∠DAB,AC2=ABAD,ADC=90°,EAB的中點(diǎn).

1)求證:ADC∽△ACB

2CEAD有怎樣的位置關(guān)系?試說(shuō)明理由;

3)若AD=4AB=6,求的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,四邊形ABCD中,∠A=90°,ADBC,BECDEAD的延長(zhǎng)線于F,DC=2ADABBE

(1)求證:ADDE

(2)求證:四邊形BCFD是菱形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在一個(gè)不透明的袋子中裝有除顏色外其余均相同的5個(gè)小球,其中紅球3個(gè),黑球2個(gè).

(1)若先從袋中取出xx>0)個(gè)紅球,再?gòu)拇又须S機(jī)摸出1個(gè)球,將摸出黑球記為事件A,若A為必然事件,則x的值為   

(2)若從袋中隨機(jī)摸出2個(gè)球,正好紅球、黑球各1個(gè),用畫樹狀圖或列表法求這個(gè)事件的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在直角坐標(biāo)系中,點(diǎn)在第一象限,軸于,軸于,,有一反比例函數(shù)圖象剛好過(guò)點(diǎn)

1)分別求出過(guò)點(diǎn)的反比例函數(shù)和過(guò),兩點(diǎn)的一次函數(shù)的函數(shù)表達(dá)式;

2)直線軸,并從軸出發(fā),以每秒個(gè)單位長(zhǎng)度的速度向軸正方向運(yùn)動(dòng),交反比例函數(shù)圖象于點(diǎn),交于點(diǎn),交直線于點(diǎn),當(dāng)直線運(yùn)動(dòng)到經(jīng)過(guò)點(diǎn)時(shí),停止運(yùn)動(dòng).設(shè)運(yùn)動(dòng)時(shí)間為(秒).

①問(wèn):是否存在的值,使四邊形為平行四邊形?若存在,求出的值;若不存在,說(shuō)明理由;

②若直線軸出發(fā)的同時(shí),有一動(dòng)點(diǎn)從點(diǎn)出發(fā),沿射線方向,以每秒個(gè)單位長(zhǎng)度的速度運(yùn)動(dòng).是否存在的值,使以點(diǎn),,,為頂點(diǎn)的四邊形為平行四邊形;若存在,求出的值,并進(jìn)一步探究此時(shí)的四邊形是否為特殊的平行四邊形;若不存在,說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案