【題目】如圖1,點O是正方形ABCD兩對角線的交點,分別延長OD到點G,OC到點E,使OG=2OD,OE=2OC,然后以OG、OE為鄰邊作正方形OEFG,連接AG,DE.

(1)求證:DE⊥AG;
(2)正方形ABCD固定,將正方形OEFG繞點O逆時針旋轉α角(0°<α<360°)得到正方形OE′F′G′,如圖2.

①在旋轉過程中,當∠OAG′是直角時,求α的度數(shù);
②若正方形ABCD的邊長為1,在旋轉過程中,求AF′長的最大值和此時α的度數(shù),直接寫出結果不必說明理由.

【答案】
(1)

解:如圖1,延長ED交AG于點H,

∵點O是正方形ABCD兩對角線的交點,

∴OA=OD,OA⊥OD,

∵OG=OE,

在△AOG和△DOE中,

,

∴△AOG≌△DOE,

∴∠AGO=∠DEO,

∵∠AGO+∠GAO=90°,

∴∠GAO+∠DEO=90°,

∴∠AHE=90°,

即DE⊥AG;


(2)

解:①在旋轉過程中,∠OAG′成為直角有兩種情況:

(Ⅰ)α由0°增大到90°過程中,當∠OAG′=90°時,

∵OA=OD= OG= OG′,

∴在Rt△OAG′中,sin∠AG′O= = ,

∴∠AG′O=30°,

∵OA⊥OD,OA⊥AG′,

∴OD∥AG′,

∴∠DOG′=∠AG′O=30°,

即α=30°;

(Ⅱ)α由90°增大到180°過程中,當∠OAG′=90°時,

同理可求∠BOG′=30°,

∴α=180°﹣30°=150°.

綜上所述,當∠OAG′=90°時,α=30°或150°.

②如圖3,當旋轉到A、O、F′在一條直線上時,AF′的長最大,

∵正方形ABCD的邊長為1,

∴OA=OD=OC=OB=

∵OG=2OD,

∴OG′=OG=

∴OF′=2,

∴AF′=AO+OF′= +2,

∵∠COE′=45°,

∴此時α=315°.


【解析】(1)延長ED交AG于點H,易證△AOG≌△DOE,得到∠AGO=∠DEO,然后運用等量代換證明∠AHE=90°即可;(2)①在旋轉過程中,∠OAG′成為直角有兩種情況:α由0°增大到90°過程中,當∠OAG′=90°時,α=30°,α由90°增大到180°過程中,當∠OAG′=90°時,α=150°;②當旋轉到A、O、F′在一條直線上時,AF′的長最大,AF′=AO+OF′= +2,此時α=315°.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】我市某縣政府為了迎接“八一”建軍節(jié),加強軍民共建活動,計劃從花園里拿出1430盆甲種花卉和1220盆乙種花卉,搭配成A、B兩種園藝造型共20個,在城區(qū)內擺放,以增加節(jié)日氣氛,已知搭配A、B兩種園藝造型各需甲、乙兩種花卉數(shù)如表所示:(單位:盆)
(1)某校某年級一班課外活動小組承接了這個園藝造型搭配方案的設計,問符合題意的搭配方案有幾種?請你幫忙設計出來.
(2)如果搭配及擺放一個A造型需要的人力是8人次,搭配及擺放一個B造型需要的人力是11人次,哪種方案使用人力的總人次數(shù)最少,請說明理由.

造型
數(shù)量

A

B

甲種

80

50

乙種

40

90

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,AB是⊙O的直徑,弦CD⊥AB,垂足是G,F(xiàn)是CG的中點,延長AF交⊙O于E,CF=2,AF=3,則EF的長是

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,矩形OABC在平面直角坐標系中,O為坐標原點,點A(0,4),C(2,0).將矩形OABC繞點O按順時針方向旋轉135°,得到矩形EFGH(點E與O重合).

(1)若GH交y軸于點M,則∠FOM=°,OM=;
(2)將矩形EFGH沿y軸向上平移t個單位.
①直線GH與x軸交于點D,若AD∥BO,求t的值;
②若矩形EFGH與矩形OABC重疊部分的面積為S個平方單位,試求當0<t≤4 ﹣2時,S與t之間的函數(shù)關系式.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】隨著科技的不斷發(fā)展,人與人的溝通方式也發(fā)生了很大的變化,盤錦市某中學九年級的一個數(shù)學興趣小組在本年級學生中進行“學生最常用的交流方式”的專題調查活動,采取隨機抽樣的方式進行問卷調查,問卷調查的結果分為四類:A.面對面交談;B.微信和QQ等聊天軟件交流;C.短信與書信交流;D.電話交流.根據(jù)調查數(shù)據(jù)結果繪制成以下兩幅不完整的統(tǒng)計圖:
(1)本次調查,一共調查了名同學,其中C類女生有名,D類男生有名;
(2)若該年級有學生150名,請根據(jù)調查結果估計這些學生中以“D.電話交流”為最常用的交流方式的人數(shù)約為多少?
(3)在本次調查中以“C.短信與書信交流”為最常用交流方式的幾位同學中隨機抽取兩名同學參加盤錦市中學生書信節(jié)比賽,請用列舉法求所抽取的兩名同學都是男同學的概率.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,邊長為2的正方形MNEF的四個頂點分在大圓O上,小圓O與正方形各邊都相切,AB與CD是大圓O的直徑,AB⊥CD,CD⊥MN,小明隨意向水平放置的該圓形區(qū)域內拋一個小球,則小球停在該圖中陰影部分區(qū)域的概率為

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某企業(yè)生產(chǎn)并銷售某種產(chǎn)品,假設銷售量與產(chǎn)量相等,如圖中的折線ABCD、線段CD分別表示該產(chǎn)品每千克生產(chǎn)成本y1(單位:元)銷售價y2(單位:元)與產(chǎn)量x(單位:kg)之間的函數(shù)關系.
(1)求線段AB所表示的y1與x之間的函數(shù)表達式.
(2)當該產(chǎn)品產(chǎn)量為多少時,獲得的利潤最大?最大利潤是多少?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△ABC中,AB是⊙O的直徑,AC與⊙O交于點D,點E在弧BD上,連接DE,AE,連接CE并延長交AB于點F,∠AED=∠ACF.

(1)求證:CF⊥AB;
(2)若CD=4,CB=4 ,cos∠ACF= ,求EF的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,用四個螺絲將四條不可彎曲的木條圍成一個木框(形狀不限),不計螺絲大小,其中相鄰兩螺絲的距離依次為3、4、5、7,且相鄰兩木條的夾角均可調整.若調整木條的夾角時不破壞此木框,則任意兩個螺絲間的距離的最大值為(

A.6
B.7
C.8
D.9

查看答案和解析>>

同步練習冊答案