【題目】如圖,在菱形ABCD中,AB=10,AC=16,點M是對角線AC上的一個動點,過點M作PQ⊥AC交AB于點P,交AD于點Q,將△APQ沿PQ折疊,點A落在點E處,當△BCE是等腰三角形時,AP的長為_____.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在矩形ABCD中,點E,F分別在邊AB,BC上,且AE=AB,將矩形沿直線EF折疊,點B恰好落在AD邊上的點P處,連接BP交EF于點Q,對于下列結(jié)論:①EF=2BE;②PF=2PE;③FQ=4EQ;④△PBF是等邊三角形.其中正確的是( )
A. ①② B. ②③ C. ①③ D. ①④
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】(1)如圖1,,求的度數(shù). (提示:作).
(2)如圖2,,當點在線段上運動時,,求與、之間的數(shù)量關(guān)系,并說明理由.
(3)在(2)的條件下,如果點在射線上運動,請你直接寫出與、之間的數(shù)量關(guān)系.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在ABCD中,AB=8,BC=5,以點A為圓心,以任意長為半徑作弧,分別交AD、AB于點P、Q,再分別以P、Q為圓心,以大于PQ的長為半徑作弧,兩弧在∠DAB內(nèi)交于點M,連接AM并延長交CD于點E,則CE的長為( 。
A. 3B. 5C. 2D. 6.5
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,點E是矩形ABCD的邊BC的中點,連接DE交AC于點F.
如圖,求證:;
如圖,作于G,試探究:當AB與AD滿足什么關(guān)系時,使得成立?并證明你的結(jié)論;
如圖,以DE為斜邊在矩形ABCD內(nèi)部作等腰,交對角線BD于N,連接AM,若,請直接寫出的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知,等邊三角形ABC的邊長為5,點P在線段AB上,點D在線段BC上,且△PDE是等邊三角形.
(1)初步嘗試:若點P與點A重合時(如圖1),BD+BE= .
(2)類比探究:將點P沿AB方向移動,使AP=1,其余條件不變(如圖2),試計算BD+BE的值是多少?
(3)拓展遷移:如圖3,在△ABC中,AB=AC,∠BAC=70°,點P在線段AB的延長線上,點D在線段CB的延長線上,在△PDE中,PD=PE,∠DPE=70°,設(shè)BP=a,請直接寫出線段BD、BE之間的數(shù)量關(guān)系(用含a的式子表示)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】先閱讀下列解題過程,然后解答問題(1)、(2)
解方程:|x+3|=2.
當x+30時,原方程可化為:x+3=2,解得x=1;
當x+3<0時,原方程可化為:x+3=2,解得x=5.
所以原方程的解是x=1,x=5.
(1)解方程:|3x1|5=0;
(2)探究:當b為何值時,方程|x2|=b+1①無解;②只有一個解;③有兩個解.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,AB是圓O的直徑,射線AM⊥AB,點D在AM上,連接OD交圓O于點E,過點D作DC=DA交圓O于點C(A、C不重合),連接OC、BC、CE.
(1)求證:CD是⊙O的切線;
(2)若圓O的直徑等于2,填空:
①當AD= 時,四邊形OADC是正方形;
②當AD= 時,四邊形OECB是菱形.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知一次函數(shù)y=kx+b(k≠0)的圖象過點(0,2),且與兩坐標軸圍成的三角形面積為2,求此一次函數(shù)的解析式.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com