【題目】(1)如圖所示,已知點C在線段AB上,線段AB=12,M,N分別是AC,BC的中點,求線段MN的長度.

(2)(1)中的“點C在線段AB上”改為“點C在線段AB延長上”,其他條件均不變,畫圖并求出線段MN的長度;

(3)已知線段AB,點C為直線AB外任意一點,點M,N分別是AC,BC的中點,連接MN,畫圖并猜想線段MN與線段AB的數(shù)量關(guān)系.(只要求畫圖,寫出結(jié)論)

【答案】(1) 6;(2) 6;(3) MN=AB.

【解析】

(1)如圖1,根據(jù)線段中點的定義表示出MCNC的長,則MN=MC+NC,代入即可;

(2)如圖2,由MN=MC-NC得結(jié)論;

(3)如圖3,依題意畫出圖形,猜想線段MN與線段AB的數(shù)量關(guān)系即可..

(1)如圖1,

∵點M、N分別是AC、BC的中點,

MC=AC,NC=BC,

MN=MC+NC=AC+BC=AB=×12=6;

(3)如圖2,

MN=MC-NC═AC-BC=AB=×12=6;

(3)如圖3,

猜想:MN=AB.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在邊長為1個單位長度的小正方形組成的網(wǎng)格中,給出了平面直角坐標系及格點AOB.(頂點是網(wǎng)格線的交點)

(1)畫出將AOB沿y軸翻折得到的AOB1,則點B1的坐標為_________.

(2)畫出將AOB沿射線AB1方向平移2.5個單位得到的A2O2B2,則點A2的坐標為_______.

(3)請求出AB1B2的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知反比例函數(shù) ,下列結(jié)論錯誤的是(
A.圖象經(jīng)過點(1,1)
B.當x<0時,y隨著x的增大而增大
C.當x>1時,0<y<1
D.圖象在第一、三象限

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知A(n,﹣2),B(1,4)是一次函數(shù)y=kx+b的圖象和反比例函數(shù)y= 的圖象的兩個交點,直線AB與y軸交于點C.
(1)求反比例函數(shù)和一次函數(shù)的關(guān)系式;
(2)求△AOC的面積;
(3)結(jié)合圖象直接寫出不等式kx+b< 的解集.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】為了倡導(dǎo)“節(jié)約用水,從我做起”,鼓樓區(qū)政府決定對區(qū)直屬機關(guān)300戶家庭的用水情況作一次調(diào)查,區(qū)政府調(diào)查小組隨機抽查了其中某些家庭一年的月平均用水量(單位:噸),調(diào)查中發(fā)現(xiàn),每戶用水量每月均在10﹣14噸范圍,并將調(diào)查結(jié)果制成了如圖所示的條形統(tǒng)計圖(不完整)和扇形統(tǒng)計圖.

(1)請將條形統(tǒng)計圖補充完整;

(2)這些家庭月用水量數(shù)據(jù)的平均數(shù)是   ,眾數(shù)是   ,中位數(shù)是   ;

(3)根據(jù)樣本數(shù)據(jù),估計鼓樓區(qū)直屬機關(guān)300戶家庭中月平均用水量不超過12噸的約有多少戶?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,菱形ABCD的邊AB=20,面積為320,∠BAD<90°,⊙O與邊AB,AD都相切,AO=10,則⊙O的半徑長等于(
A.5
B.6
C.2
D.3

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知矩形ABCD中,AB=3,AD=2,分別以邊AD,BC為直徑在矩形ABCD的內(nèi)部作半圓O1和半圓O2 , 一平行于AB的直線EF與這兩個半圓分別交于點E、點F,且EF=2(EF與AB在圓心O1和O2的同側(cè)),則由 ,EF, ,AB所圍成圖形(圖中陰影部分)的面積等于

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某地新建的一個企業(yè),每月將生產(chǎn)1960噸污水,為保護環(huán)境,該企業(yè)計劃購置污水處理器,并在如下兩個型號種選擇:

污水處理器型號

A型

B型

處理污水能力(噸/月)

240

180

已知商家售出的2臺A型、3臺B型污水處理器的總價為44萬元,售出的1臺A型、4臺B型污水處理器的總價為42萬元.
(1)求每臺A型、B型污水處理器的價格;
(2)為確保將每月產(chǎn)生的污水全部處理完,該企業(yè)決定購買上述的污水處理器,那么他們至少要支付多少錢?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖已知線段ABCD的公共部分BD=AB= CD,線段ABCD的中點EF之間距離是10cm,AB,CD的長

查看答案和解析>>

同步練習冊答案