,則關于的一元二次方程必有一個定根,它

是_______.

1  解析:由,得,則原方程可化為,

解得

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

已知二次函數(shù)y=x2+bx+c的對稱軸為直線x=1,且圖象與x軸交于A、B兩點,AB=2.若關于x的一元二次方程x2+bx+c-t=0(t為實數(shù)),在-2<x<
72
的范圍內(nèi)有實數(shù)解,則t的取值范圍是
 

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

20、已知關于x的一元二次方程x2+bx+c=x有兩個實數(shù)根x1,x2,且滿足x1>0,x2-x1>1.
(1)試證明c>0;
(2)證明b2>2(b+2c);
(3)對于二次函數(shù)y=x2+bx+c,若自變量取值為x0,其對應的函數(shù)值為y0,則當0<x0<x1時,試比較y0與x1的大。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

若x1,x2是關于x的一元二次方程ax2+bx+c=0(a≠0)的兩個根,則方程的兩個根x1,x2和系數(shù)a,b,c有如下關系:x1+x2=-
b
a
x1x2=
c
a
.我們把它們稱為根與系數(shù)關系定理.
如果設二次函數(shù)y=ax2+bx+c(a≠0)的圖象與x軸的兩個交點為A(x1,0),B(x2,0).利用根與系數(shù)關系定理我們又可以得到A、B兩個交點間的距離為:
AB=|x1-x2|=
(x1+x2)2-4x1x2
=
(-
b
a
)
2
-
4c
a
=
b2-4ac
a2
=
b2-4ac
|a|

請你參考以上定理和結論,解答下列問題:
設二次函數(shù)y=ax2+bx+c(a>0)的圖象與x軸的兩個交點為A(x1,0),B(x2,0),拋物線的頂點為C,顯然△ABC為等腰三角形.
(1)當△ABC為等腰直角三角形時,求b2-4ac的值;
(2)當△ABC為等邊三角形時,b2-4ac=
 
;
(3)設拋物線y=x2+kx+1與x軸的兩個交點為A、B,頂點為C,且∠ACB=90°,試問如何平移此拋物線,才能使∠ACB=60°?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2012•紅橋區(qū)二模)若關于x的一元二次方程kx2-2x-1=0有兩個不相等的實數(shù)根,則k的取值范圍是
k>-1且k≠0
k>-1且k≠0

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

已知關于x的一元二次方程x2-4x+1-2k=0有兩個不等的實根,
(1)求k的取值范圍;
(2)若k取小于1的整數(shù),且此方程的解為整數(shù),則求出此方程的兩個整數(shù)根;
(3)在(2)的條件下,二次函數(shù)y=x2-4x+1-2k與x軸交于A、B兩點(A點在B點的左側),D點在此拋物線的對稱軸上,若
∠DAB=60°,求D點的坐標.

查看答案和解析>>

同步練習冊答案