【題目】如圖,在數(shù)軸上點(diǎn)A表示的數(shù)a、點(diǎn)B表示數(shù)b,a、b滿足|a﹣40|+(b+8)2=0.點(diǎn)O是數(shù)軸原點(diǎn).
(1)點(diǎn)A表示的數(shù)為 ,點(diǎn)B表示的數(shù)為 ,線段AB的長為 .
(2)若點(diǎn)A與點(diǎn)C之間的距離表示為AC,點(diǎn)B與點(diǎn)C之間的距離表示為BC,請?jiān)跀?shù)軸上找一點(diǎn)C,使AC=2BC,則點(diǎn)C在數(shù)軸上表示的數(shù)為 .
(3)現(xiàn)有動(dòng)點(diǎn)P、Q都從B點(diǎn)出發(fā),點(diǎn)P以每秒1個(gè)單位長度的速度向終點(diǎn)A移動(dòng);當(dāng)點(diǎn)P移動(dòng)到O點(diǎn)時(shí),點(diǎn)Q才從B點(diǎn)出發(fā),并以每秒3個(gè)單位長度的速度向右移動(dòng),且當(dāng)點(diǎn)P到達(dá)A點(diǎn)時(shí),點(diǎn)Q就停止移動(dòng),設(shè)點(diǎn)P移動(dòng)的時(shí)間為t秒,問:當(dāng)t為多少時(shí),P、Q兩點(diǎn)相距4個(gè)單位長度?
【答案】(1)點(diǎn)A表示的數(shù)為40,點(diǎn)B表示的數(shù)為﹣8,線段AB的長為48;(2)8或﹣40(3)當(dāng)t為4秒、10秒和14秒時(shí),P、Q兩點(diǎn)相距4個(gè)單位長度
【解析】
(1)根據(jù)偶次方以及絕對值的非負(fù)性即可求出a、b的值,可得點(diǎn)A表示的數(shù),點(diǎn)B表示的數(shù),再根據(jù)兩點(diǎn)間的距離公式可求線段AB的長;
(2)分兩種情況:點(diǎn)C在線段AB上,點(diǎn)C在射線AB上,進(jìn)行討論即可求解;
(3)分0<t≤8、8<t≤12,12<t≤48三種情況考慮,根據(jù)P,Q移動(dòng)的路程結(jié)合PQ=4即可得出關(guān)于t的一元一次方程,解之即可得出結(jié)論.
解:(1)∵|a﹣40|+(b+8)2=0,
∴a﹣40=0,b+8=0,
解得a=40,b=﹣8,
AB=40﹣(﹣8)=48.
故點(diǎn)A表示的數(shù)為40,點(diǎn)B表示的數(shù)為﹣8,線段AB的長為48;
(2)點(diǎn)C在線段AB上,
∵AC=2BC,
∴AC=48×=32,
點(diǎn)C在數(shù)軸上表示的數(shù)為40﹣32=8;
點(diǎn)C在射線AB上,
∵AC=2BC,
∴AC=40×2=80,
點(diǎn)C在數(shù)軸上表示的數(shù)為40﹣80=﹣40.
故點(diǎn)C在數(shù)軸上表示的數(shù)為8或﹣40;
(3)(i)當(dāng)0<t≤8時(shí),點(diǎn)Q還在點(diǎn)B處,
∴PQ=t=4;
(ii)當(dāng)8<t≤12時(shí),點(diǎn)P在點(diǎn)Q的右側(cè),
∴
解得:;
(iii)當(dāng)12<t≤48時(shí),點(diǎn)P在點(diǎn)Q的左側(cè),
∴3(t﹣8)﹣t=4,
解得:t=14,
綜上所述:當(dāng)t為4秒、10秒和14秒時(shí),P、Q兩點(diǎn)相距4個(gè)單位長度.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某景區(qū)的水上樂園有一批人座的自劃船,每艘可供至位游客乘坐游湖,因景區(qū)加大宣傳,預(yù)計(jì)今年游客將會增加.水上樂園的工作人員在去年月日一天出租的艘次人自劃船中隨機(jī)抽取了艘,對其中抽取的每艘船的乘坐人數(shù)進(jìn)行統(tǒng)計(jì),并制成如下統(tǒng)計(jì)圖.
(1)求扇形統(tǒng)計(jì)圖中, “乘坐1人”所對應(yīng)的圓心角度數(shù);
(2)估計(jì)去年月日這天出租的艘次人自劃船平均每艘船的乘坐人數(shù);
(3)據(jù)旅游局預(yù)報(bào)今年月日這天該景區(qū)可能將增加游客300人,請你為景區(qū)預(yù)計(jì)這天需安排多少艘4人座的自劃船才能滿足需求.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,ABCD的對角線AC,BD相交于點(diǎn)O,AE=CF.
(1)求證:△BOE≌△DOF;
(2)連接DE,BF,若BD⊥EF,試探究四邊形EBFD的形狀,并對結(jié)論給予證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某快車的計(jì)費(fèi)規(guī)則如表1,小明幾次乘坐快車的情況如表2,請仔細(xì)觀察分析表格解答以下問題:
(1)填空:a= ,b= ;
(2)列方程求解表1中的x;
(3)小明的爸爸23:10打快車從機(jī)場回家,快車行駛的平均速度是100公里/小時(shí),到家后小明爸爸支付車費(fèi)603元,請問機(jī)場到小明家的路程是多少公里?(用方程解決此問題)
表1:某快車的計(jì)費(fèi)規(guī)則
里程費(fèi)(元/公里) | 時(shí)長費(fèi)(元/分鐘) | 遠(yuǎn)途費(fèi)(元/公里) | |||
5:00﹣23:00 | a | 9:00﹣18:00 | x | 12公里及以下 | 0 |
23:00﹣次日5:00 | 3.2 | 18:00﹣次日9:00 | 0.5 | 超出12公里的部分 | 1.6 |
(說明:總費(fèi)用=里程費(fèi)+時(shí)長費(fèi)+遠(yuǎn)途費(fèi))
表2:小明幾次乘坐快車信息
上車時(shí)間 | 里程(公里) | 時(shí)長(分鐘) | 遠(yuǎn)途費(fèi)(元) | 總費(fèi)用(元) |
7:30 | 5 | 5 | 0 | 13.5 |
10:05 | 20 | 18 | 66.7 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】數(shù)學(xué)活動(dòng)課上,王老師說:“是無理數(shù),無理數(shù)就是無限不循環(huán)小數(shù),同學(xué)們,你能把的小數(shù)部分全部寫出來嗎?”大家議論紛紛,小明同學(xué)說:“要把它的小數(shù)部分全部寫出來是非常難的,但我們可以用﹣1表示它的小數(shù)部分.”王老師說:“小明同學(xué)的說法是正確的,因?yàn)?/span>的整數(shù)部分是1,將這個(gè)數(shù)減去其整數(shù)部分,差就是小數(shù)部分,”請你解答:
(1)填空題:的整數(shù)部分是 ;小數(shù)部分是
(2)已知8+=x+y,其中x是一個(gè)整數(shù),且0<y<1,求出2x+(y-)2012的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知矩形ABCD(AB<AD).
(1)請用直尺和圓規(guī)按下列步驟作圖,保留作圖痕跡;
①以點(diǎn)A為圓心,以AD的長為半徑畫弧交邊BC于點(diǎn)E,連接AE;
②作∠DAE的平分線交CD于點(diǎn)F;
③連接EF;
(2)在(1)作出的圖形中,若AB=8,AD=10,則tan∠FEC的值為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】今年蘇州市在全市中小學(xué)中開展以感恩和生命為主題的教育活動(dòng),各中小學(xué)結(jié)合學(xué)生實(shí)際,開展了形式多樣的感恩教育活動(dòng).下面圖①,圖②分別是某校調(diào)查部分學(xué)生是否知道母親生日情況的扇形統(tǒng)計(jì)圖和條形統(tǒng)計(jì)圖.根據(jù)圖上信息,解答下列問題:
(1)求本次被調(diào)查學(xué)生的人數(shù),并補(bǔ)全條形統(tǒng)計(jì)圖;
(2)若全校共有2700名學(xué)生,你估計(jì)這所學(xué)校有多少名學(xué)生知道母親的生日?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】從甲地到乙地有兩條公路,一條是全長600km的普通公路,另一條是全長480km的高速公路,某客車在高速公路上行駛的平均速度比在普通公路上快45/ ,由高速公路從甲地到乙地所需的時(shí)間是由普通公路從甲地到乙地所需時(shí)間的一半,求該客車由高速公路從甲地到乙地所需的時(shí)間.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在矩形ABCD中,AB=4,AD=9點(diǎn)F是邊BC上的一點(diǎn),點(diǎn)E是AD上的一點(diǎn),AE:ED=1:2,連接EF、DF,若EF=2,則CF的長為______________。
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com