【題目】如圖,點(diǎn)E,F在函數(shù)y=(k>0)的圖象上.直線EF:y=﹣x+n分別與x軸、y軸交于點(diǎn)A,B.且BE=AF=m,過點(diǎn)E作EP⊥y軸于P.已知△0EP的面積為1.則k的值是_____.△OEF的面積是_____(用含m,n的式子表示).
【答案】2, ﹣m2.
【解析】
作EC⊥x軸于C,FD⊥x軸于D,FH⊥y軸于H,根據(jù)反比例函數(shù)的比例系數(shù)的幾何意義由△OEP的面積為1易得k=2,再根據(jù)S△OEF+S△OFD=S△OEC+S梯形ECDF,S△OFD=S△OEC=1,所以S△OEF=S梯形ECDF,然后根據(jù)梯形面積公式計(jì)算.
作EC⊥x軸于C,FD⊥x軸于D,FH⊥y軸于H,如圖,
∵△OEP的面積為1,
∴|k|=1,
而k>0,
∴k=2,
∴反比例函數(shù)解析式為y=,
∵B(0,n),A(n,0),
∴OA=OB=n,
∴∠OBA=∠OAB=45°
∵BE=AF=m,
∴E(m,),F(, m),
∵S△OEF+S△OFD=S△OEC+S梯形ECDF,
而S△OFD=S△OEC=1,
∴S△OEF=S梯形ECDF=(m+)(﹣m)=﹣m2.
故答案為作EC⊥x軸于C,FD⊥x軸于D,FH⊥y軸于H,如圖,
∵△OEP的面積為1,
∴|k|=1,
而k>0,
∴k=2,
∴反比例函數(shù)解析式為y=,
∵B(0,n),A(n,0),
∴OA=OB=n,
∴∠OBA=∠OAB=45°
∵BE=AF=m,
∴E(m,),F(, m),
∵S△OEF+S△OFD=S△OEC+S梯形ECDF,
而S△OFD=S△OEC=1,
∴S△OEF=S梯形ECDF=(m+)(﹣m)=﹣m2.
故答案為2,﹣m2.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠C=90°,以AC為直徑作⊙O,交AB于D,過點(diǎn)O作OE∥AB,交BC于E.
(1)求證:ED為⊙O的切線;
(2)如果⊙O的半徑為,ED=2,延長EO交⊙O于F,連接DF、AF,求△ADF的面積.
【答案】(1)證明見解析;(2)
【解析】試題分析:(1)首先連接OD,由OE∥AB,根據(jù)平行線與等腰三角形的性質(zhì),易證得≌ 即可得,則可證得為的切線;
(2)連接CD,根據(jù)直徑所對的圓周角是直角,即可得 利用勾股定理即可求得的長,又由OE∥AB,證得根據(jù)相似三角形的對應(yīng)邊成比例,即可求得的長,然后利用三角函數(shù)的知識,求得與的長,然后利用S△ADF=S梯形ABEF-S梯形DBEF求得答案.
試題解析:(1)證明:連接OD,
∵OE∥AB,
∴∠COE=∠CAD,∠EOD=∠ODA,
∵OA=OD,
∴∠OAD=∠ODA,
∴∠COE=∠DOE,
在△COE和△DOE中,
∴△COE≌△DOE(SAS),
∴ED⊥OD,
∴ED是的切線;
(2)連接CD,交OE于M,
在Rt△ODE中,
∵OD=32,DE=2,
∵OE∥AB,
∴△COE∽△CAB,
∴AB=5,
∵AC是直徑,
∵EF∥AB,
∴S△ADF=S梯形ABEFS梯形DBEF
∴△ADF的面積為
【題型】解答題
【結(jié)束】
25
【題目】【題目】已知,拋物線y=ax2+ax+b(a≠0)與直線y=2x+m有一個公共點(diǎn)M(1,0),且a<b.
(1)求b與a的關(guān)系式和拋物線的頂點(diǎn)D坐標(biāo)(用a的代數(shù)式表示);
(2)直線與拋物線的另外一個交點(diǎn)記為N,求△DMN的面積與a的關(guān)系式;
(3)a=﹣1時,直線y=﹣2x與拋物線在第二象限交于點(diǎn)G,點(diǎn)G、H關(guān)于原點(diǎn)對稱,現(xiàn)將線段GH沿y軸向上平移t個單位(t>0),若線段GH與拋物線有兩個不同的公共點(diǎn),試求t的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在菱形中,,對角線平分角,點(diǎn)是內(nèi)一點(diǎn),連接、、,若,,,則菱形的面積等于_____________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】知關(guān)于x的方程x2+2(a-1)x+a2-7a-4=0的根為x1,x2,且滿足x1x2-3x1-3x2-2=0,求的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下表中有兩種移動電話計(jì)費(fèi)方式.
月使用費(fèi)元 | 主叫限定時間 | 主叫超時費(fèi) | 被叫 | |
方式一 | 49 | 100 | 免費(fèi) | |
方式二 | 69 | 150 | 免費(fèi) |
設(shè)一個月內(nèi)主叫通話為t分鐘是正整數(shù).
當(dāng)時,按方式一計(jì)費(fèi)為______元;按方式二計(jì)費(fèi)為______元;
當(dāng)時,是否存在某一時間t,使兩種計(jì)費(fèi)方式相等,若存在,請求出對應(yīng)t的值,若不存在,請說明理由;
當(dāng)時,請直接寫出省錢的計(jì)費(fèi)方式?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了弘揚(yáng)我國古代數(shù)學(xué)發(fā)展的偉大成就,某校九年級進(jìn)行了一次數(shù)學(xué)知識競賽,并設(shè)立了以我國古代數(shù)學(xué)家名字命名的四個獎項(xiàng):“祖沖之獎”、“劉徽獎”、“趙爽獎”和“楊輝獎”,根據(jù)獲獎情況繪制成如圖1和圖2所示的條形統(tǒng)計(jì)圖和扇形統(tǒng)計(jì)圖,并得到了獲“祖沖之獎”的學(xué)生成績統(tǒng)計(jì)表:
“祖沖之獎”的學(xué)生成績統(tǒng)計(jì)表:
分?jǐn)?shù)分 | 80 | 85 | 90 | 95 |
人數(shù)人 | 4 | 2 | 10 | 4 |
根據(jù)圖表中的信息,解答下列問題:
這次獲得“劉徽獎”的人數(shù)是多少,并將條形統(tǒng)計(jì)圖補(bǔ)充完整;
獲得“祖沖之獎”的學(xué)生成績的中位數(shù)是多少分,眾數(shù)是多少分;
在這次數(shù)學(xué)知識竟賽中有這樣一道題:一個不透明的盒子里有完全相同的三個小球,球上分別標(biāo)有數(shù)字“”,“”和“2”,隨機(jī)摸出一個小球,把小球上的數(shù)字記為x放回后再隨機(jī)摸出一個小球,把小球上的數(shù)字記為y,把x作為橫坐標(biāo),把y作為縱坐標(biāo),記作點(diǎn)用列表法或樹狀圖法求這個點(diǎn)在第二象限的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,Rt△ABC中,∠ABC=90°,點(diǎn)D,F(xiàn)分別是AC,AB的中點(diǎn),CE∥DB,BE∥DC.
(1)求證:四邊形DBEC是菱形;
(2)若AD=3,DF=1,求四邊形DBEC面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)中,直線l經(jīng)過原點(diǎn),且與y軸正半軸所夾的銳角為60°,過點(diǎn)A(0,1)作y軸的垂線l于點(diǎn)B,過點(diǎn)B1作作直線l的垂線交y軸于點(diǎn)A1,以A1B.BA為鄰邊作ABA1C1;過點(diǎn)A1作y軸的垂線交直線l于點(diǎn)B1,過點(diǎn)B1作直線l的垂線交y軸于點(diǎn)A2,以A2B1.B1A1為鄰邊作A1B1A2C2;…;按此作法繼續(xù)下去,則Cn的坐標(biāo)是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,矩形 OABC 的頂點(diǎn) O 在坐標(biāo)原點(diǎn),頂點(diǎn) A,C 分別在 x,y 軸的正半軸上,頂點(diǎn) B 在反比例函數(shù) y (k 為常數(shù),k>0,x>0)的圖象上,將矩形 OABC 繞點(diǎn) B 逆時針方向旋轉(zhuǎn) 90°得到矩形 BCOA ,點(diǎn) O 的對應(yīng)點(diǎn)O 恰好落在此反比例函數(shù)圖象上.延長 AO ,交 x軸于點(diǎn) D,若四邊形CADO 的面積為 2,則 k 的值為( )
A. +1B. -1C. 2 +2D. 2 -2
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com